Immobilization and Thermostability Characterization of Cephalosporin C Acylase

Article Preview

Abstract:

Some kinds of epoxy supports, LX1000-EP(C), LX1000-EP(D), LKZ-116, LKZ-118 and LKZ-126 were utilized to covalently immobilize cephalosporin C (CPC) acylase, the key enzyme in the one-step enzymatic process of 7-aminocephalosporanic acid (7-ACA) production. After preliminary carrier screening, the immobilized CPC acylase with LKZ-118 as the support shows the highest activity (115 U/g) suggesting its potential application in industrial 7-ACA production. The conditions of CPC acylase immobilized on LKZ-118 to achieve higher activity and thermostability of the immobilized enzyme were optimized by adjusting pH value, buffer concentration, enzyme dosage and immobilized time. The activity of immobilized enzyme was found to be optimal at pH 8.5, in 0.85 M sodium phosphate buffer when the enzyme dosage was 500 U/g and immobilization time was 28 h.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

682-688

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Illanes, C. Altamirano, and M. E. Zuiiiga. Biotechnol. Bioeng, 50: 609-616. (1996).

Google Scholar

[2] T. Boller, C. Meier, S. Menzler. Organic Proc Res Dev, 6: 509-519. (2002).

Google Scholar

[3] Boniello, T. Mayr, I. Klimant, B. Koenig, W. Riethorst, B. Nidetzky. Biotechnol. Bioeng, 106: 528-540. (2010).

DOI: 10.1002/bit.22694

Google Scholar

[4] H. Essa, E. Magner, J. Cooney, B.K. Hodnett. Journal of Molecular Catalysis, 49: 61-68. (2007).

Google Scholar

[5] T.J. Hancock and J.T. Hsu. Biotechnol. Bioeng, 51: 410-421. (1996).

Google Scholar

[6] M.J. Hernaiz, D.H.G. Crout. Enzyme Microb Technol, 27: 26-32. (2000).

Google Scholar

[7] J. Bryjak, A.W. Trochimczuk. Enz Microb Technol, 39: 573-578. (2006).

Google Scholar

[8] E. Katchalski-Katzir, D. Kraemer. J Mol Catal B Enzym, 10: 157-176. (2000).

Google Scholar

[9] Kazan, A. Erarslan. Appl. Biochem. Biotech, 62, 1-13. (1997).

Google Scholar

[10] D.W. Kim, K.H. Yoon. Biotechnol Lett, 23: 1067-1071. (2001).

Google Scholar

[11] K.M. Koeller, C.H. Wong. Nature, 409: 231-234. (2001).

Google Scholar

[12] Mateo, O. Abian, R. Fernandez-Lafuente, J.M. Guisan. Enz Microb Technol, 26: 509-515. (2000).

Google Scholar

[13] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, F. Fernandez-Lafuente. Enzyme Microb Technol, 40: 1451-1463. (2007).

DOI: 10.1016/j.enzmictec.2007.01.018

Google Scholar

[14] W. Melander, D. Corradini, C. Hoorvath. J. Chromatogr, 317: 67-85. (1984).

Google Scholar

[15] Patett, L. Fischer. Anal Biochem, 350: 304-306. (2006).

Google Scholar

[16] L. Pollegioni, S. Lorenzi, E. Rosini, G.L. Marcone, G. Molla, R. Verga, W. Cabri, M.S. Pilone. Protein Sci, 14: 3064-3076. (2005).

DOI: 10.1110/ps.051671705

Google Scholar

[17] K. Smalla, J. Turkova, J. Coupek, P. Herman. Biotechnol. Appl. Biochem, 10: 21-31. (1988).

Google Scholar

[18] P.W. Tardioli, G.M. Zanin, F.F. Morae. Enzyme Microb Technol, 39: 1270-1278. (2006).

Google Scholar

[19] J.B. Wheatley, D.E. Schmidt Jr. J. Chromatogr. A, 849: 1-12. (1999).

Google Scholar

[20] Wong C-H, Whitesides GM. Enzymes in synthetic organic chemistry. Oxford: Pergamon Press, (1994).

Google Scholar

[21] X.W. Zhu, H. Luo, Y.H. Chang, H.B. Su, Q. Li, H.M. Yu, Z.Y. Shen. World J Microbiol Biotechnol, 27: 823-829. (2011).

Google Scholar