Photocatalytic Degradation of Cresol Red in Wastewater Using Nanometer TiO2

Article Preview

Abstract:

In this paper, titanium tetrachloride with inorganic salts as raw materials in the experiment, TiO2 is prepared by the hydrolyzation method in (NH4)2SO4-modified TiCl4 solution, the maximal photocatalytic activity is observed at the mole ratio of TiCl4: (NH4)2SO4=1:2, the water-bath temperature of 90°C. The photocatalytic degradation efficiency is influenced by the initial cresol red concentration, the solution pH, irradiation time and the UV irradiation intensity. The short degradation time shows that the nanometer TiO2 can be used as an easy and efficient method to degrade the cresol red solution in wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-177

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Wang, P. Neogi, D. Forciniti, On one-dimensional self-assembly of surfactant-coated nanoparticles,J. Chem. Phys. 125 (2006) 194717.

DOI: 10.1063/1.2375091

Google Scholar

[2] Wang, G.D. Liu, M.H. Engelhard, Y.H. Lin, Sensitive immunoassay of a biomarker tumor necrosis factor-α based on poly(guanine)-functionalized sil-ica nanoparticle label, Anal. Chem. 78 (2006) 6974.

DOI: 10.1021/ac060809f

Google Scholar

[3] A.H. Yuwono, Y. Zhang, J. Wang, X.H. Zhang, H.M. Fan, W. Ji, Diblock copolymer templated nanohybird thin films of highly ordered TiO2 nanoparticle arrays in PMMA matrix, Chem. Mater. 18 (2006) 5876.

DOI: 10.1021/cm061495f

Google Scholar

[4] P. B Dorn, C. Chou and J. Gentempo. J. Chemosphere. Vol. 16 (1987) 1501.

Google Scholar

[5] J. Spivack, T.K. Leib and J.H. Lobos. J. Biol. Chem., Vol. 269 (1994) 7323.

Google Scholar

[6] J. Hoigue and H. Bader. Water Res. Vol. 17 (1983) 173.

Google Scholar

[7] J. Hoigue, H. Bader, W.R. Haag and J. Taehein. Water Res. Vol. 19 (1985) 993.

Google Scholar

[8] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann. Chem. ReV. Vol. 95 (1995) 69.

Google Scholar

[9] A. Mills and S.L. Hunte. J. Photochem. Photobiol. A. Vol. 108 (1997) 1.

Google Scholar

[10] P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chem. Mater. 11 (1999) 2813.

DOI: 10.1021/cm990185c

Google Scholar

[11] Z. Sun, D.H. Kim, M. Wolkenhauer, G.G. Bumbu, W. Knoll, J.S. Gutmann, Syn-thesis and photoluminescence of titania nanoparticle arrays templated by block-copolymer thin films, ChemphysChem 7 (2006) 370.

DOI: 10.1002/cphc.200500340

Google Scholar

[12] J. Gutierrez, A. Tercjak, I. Garcia, L. Peponi, I. Mondragon, Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol-gel synthesis, Nanotechnology 19 (2008) 155607.

DOI: 10.1088/0957-4484/19/15/155607

Google Scholar

[13] S. Forster, M. Antonietti, Amphiphilic block copolymers in structure-controlled nanomaterial hybrids, Adv. Mater 10 (1998) 195.

DOI: 10.1002/(sici)1521-4095(199802)10:3<195::aid-adma195>3.0.co;2-v

Google Scholar

[14] Y.C. Chung and C.Y. Chen. Water Air Soil Pollut. Vol. 200 (2009) 191.

Google Scholar

[15] J.G. Yu, H.G. Yu and B. Cheng. Acta Chimica Sinica. Vol. 61 (2003) 1271.

Google Scholar

[16] R.H. Davis and D. Worsley. Chem. Soc. Rev. Vol. 22 (1993) 417.

Google Scholar

[17] S. Kaneco, H. Katsumata and T. Suzuki. J. Chem. Eng. Vol. 125 (2006) 59.

Google Scholar

[18] Y.Q. Hou, D.M. Zhuang and G. Zhang. Chinese Journal of Catalysis. Vol. 25 (2004) 96.

Google Scholar

[19] J.M. Wu and T.W. Zhang. J. Photochem. Photobiol. A. Chem. 162 (2004) 171.

Google Scholar