Photocatalytic Degradation of Bromophenol Blue Solution Using Nanometer TiO2

Article Preview

Abstract:

Titanium tetrachloride with inorganic salts as raw materials in the experiment, TiO2 is prepared by the hydrolyzation method in (NH4)2SO4-modified TiCl4 solution, the maximal photocatalytic activity is observed at the mole ratio of TiCl4: (NH4)2SO4=1:2, the water-bath temperature of 90°C. Bromophenol blue solution is degraded by the nanometer TiO2. The photocatalytic degradation efficiency is influenced by the nanometer TiO2 amount, irradiation time, the UV irradiation intensity and solution temperature. The short degradation time shows that the nanometer TiO2 can be used as an easy and efficient method to degrade bromophenol blue solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-185

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.B. Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro, P. Savarino, V. Augugliaro, G. Marci and L. Palmisano. Environ. Sci. Technol. Vol. 35 (2001) 971.

DOI: 10.1021/es000162v

Google Scholar

[2] I.A. Salem, M.S. El-Maazawi. Chemosphere. Vol. 41 (2000) 1173.

Google Scholar

[3] A.B. Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro, P. Savarino, V. Augugliaro, G. Marci and L. Palmisano. Environ. Sci. Technol. Vol. 35 (2001) 971.

DOI: 10.1021/es000162v

Google Scholar

[4] B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo and V. Murugesan. Chemosphere. Vol. 46 (2002) 1173.

DOI: 10.1016/s0045-6535(01)00284-3

Google Scholar

[5] M. Saquib and M. Muneer. Dyes Pigments. Vol. 56 (2003) 37.

Google Scholar

[6] N. Negishi, T. Iyoda, K. Hashimoto and A. Fujishima. Chem. Lett. Vol. 9 (1995) 841.

Google Scholar

[7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga. Science. Vol. 293 (1995) 269.

Google Scholar

[8] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann. Chem. Rev. Vol. 95 (1995) 69.

Google Scholar

[9] X. Fu, W.A. Zeltner and M.A. Anderson. Appl. Catal. B: Environ. Vol. 6 (1995) 209.

Google Scholar

[10] K. Tennakone and I.R.M. Kottegoda. J. Photochem. Photobiol. A: Chem. Vol. 93 (1996) 79.

Google Scholar

[11] R.W. Matthews. J. Catal. Vol. 111 (1988) 264.

Google Scholar

[12] K.I. Tennakone and R.M. Kottegoda. J. Photochem. Photobiol. A. Vol. 93 (1996) 79.

Google Scholar

[13] W.S. Kuo and Y.T. Lin. J. Environ. Sci. Health B. Vol. 35 (2000), 61.

Google Scholar

[14] J. Krýsa, M. Keppert, G. Waldner and J. Jirkovský. Electrochim. Acta. Vol. 50(2005) 5255.

DOI: 10.1016/j.electacta.2005.01.054

Google Scholar

[15] S.T. Martin, H. Herrmann, M.R. Hoffmann. J. Chem. Soc. Faraday Trans. Vol. 90 (1994) 3315.

Google Scholar

[16] S. Irmak, E. Kusvuran and O. Erbatur. Appl. Catal. B: Environ. Vol. 54 (2004) 85.

Google Scholar

[17] K. Vinodgopal, S. Hotchandani and P.V. Kamat. J. Phys. Chem. Vol. 97 (1993) 9040.

Google Scholar

[18] M.E. Osugi, G.A. Umbuzeiro, M.A. Anderson and M.V.B. Zanoni. Electrochim. Acta. Vol. 50 (2005) 5261.

Google Scholar

[19] SA Haque, S, Koops, N. Tokmoldin, JR. Durrant, J. Huang , E. Palomares. Adv Mater. Vol. 19(2007) 683.

Google Scholar

[20] P.V. Kamat. Chem. Phys. J. Vol. 111 (2007) 2834.

Google Scholar

[21] B. Neppolian, H. Yamashita, Y. Okada, H. Nishijima, M. Anpo. Catal Lett. Vol. 105 (2005) 111.

Google Scholar

[22] B. Neppolian, H. S. Jie, J. P. Ahn, J. K. Pare, M. Anpo. Chem. Lett. Vol. 33 (2004) 1562.

Google Scholar

[23] W. Y. Teoh, R. Amal, L. Madler, S. E. Pratsinis. Catal. Today. Vol. 120 (2007) 203.

Google Scholar

[24] Y. Cong, J. L. Zhang, F. Chen, M. Anpo. Chem. Phys. C. Vol. 111 (2007) 6976.

Google Scholar

[25] H. Usui, O. Miyamoto, T. Nomiyama, Y. Horie and T. Miyazaki. Sol. Energy Mater. Sol. Cells. Vol. 86 (2005) 123.

Google Scholar

[26] Y. Ma and J.N. Yao. Chemosphere. Vol. 38 (1999) 2407.

Google Scholar