Fabrication of Silver Nanoparticle Decorated AFM Tips for Tip-Enhanced Raman Scattering Applications

Article Preview

Abstract:

We report on a simple method for the fabrication of metalized tips by depositing gas-phase synthesized silver nanoparticles onto atomic force microscope (AFM) tips. The method enables fabricating tips suitable for AFM based tip-enhanced Raman spectroscopy (TERS) with high yield. The performance of the fabricated silver nanoparticle decorated tips is examined by detecting low concentration BPE molecules using a transmission mode TERS setup. An 30-fold enhancement of the Raman signal is shown. The net TERS enhancement factor is calculated to be about 1000.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-198

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. F. Domke and B. Pettinger, ChemPhysChem Vol. 11(2010), p.1365.

Google Scholar

[2] A. Hartschuh, Angew. Chem. Int. Ed. Vol. 47(2008), p.8178.

Google Scholar

[3] L. Novotny and S. J. Stranick, Annu. Rev. Phys. Chem. Vol. 57(2006), p, 303.

Google Scholar

[4] B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi and W. Zhang, Chem. Phys. Lett. Vol. 472 (2009), p.1.

Google Scholar

[5] E. Bailo and V. Deckert, Chem. Soc. Rev. Vol. 37(2008), p.921.

Google Scholar

[6] J. Steidtner and B. Pettinger, Phys. Rev. Lett. Vol. 100(2008) p.236101.

Google Scholar

[7] N. Anderson, A. Hartschuh, S. Cronin and L. Novotny, J. Am. Chem. Soc. Vol. 127(2005), p.2533.

Google Scholar

[8] R. M. Stöckle, Y. D. Suh, V. Deckert and R. Zenobi, Chem. Phys. Lett. Vol. 318(2000), p.131.

Google Scholar

[9] M. S. Anderson, Appl. Phys. Lett. Vol. 76(2000), p.3130.

Google Scholar

[10] N. Hayazawa, Y. Inouye, Z. Sekkat and S. Kawata, Opt. Commun. Vol. 183(2000), p.333.

Google Scholar

[11] E. Bailo and V. Dechert, Chem. Soc. Rev. Vol. 37(2008), p.921.

Google Scholar

[12] C. Williams and D. Roy, J. Vac. Sci. Technol. B Vol. 26(2008), p.1761.

Google Scholar

[13] N. Hayazawa, Y. Inouye, Z. Sekkat and S. Kawata, J. Chem. Phys. Vol. 117 (2002), p.1296.

Google Scholar

[14] E. Bailo and V. Deckert, Angew. Chem. Int. Ed. Vol. 47 (2008), p.1658.

Google Scholar

[15] B. Pettinger, K. Domke, D. Zhang, G. Picardi and R. Schuster, Surf. Sci. Vol. 603(2009), p.1335.

Google Scholar

[16] A. Bouhelier, J. Renger, M. R. Beversluis and L. Novotny, J. Microsc. Vol. 210(2003), p.220.

Google Scholar

[17] H. Haberland, M. Mall, and Y. Thurner, J. Vac. Sci. Technol. A Vol. 12(1994), p.2925.

Google Scholar

[18] M. Han, C. Xu, L. Yang, J. Zhang, F. Song and G. Wang, Adv. Mater. Vol. 19(2007), p. (2007).

Google Scholar

[19] B. S. Yeo, W. H. Zhang, C. Vannier and R. Zenobi, Appl. Spectrosc. Vol. 60(2006), p.1142.

Google Scholar

[20] N. Hayazawa, Y. Inouye, Z. Sekkat and S. Kawata, Chem. Phys. Lett. Vol. 335(2001), p.369.

Google Scholar

[21] C. H. Xu, B. Xie, Y. J. Liu, L. B. He and M. Han, Eur. Phys. J. D, Vol. 52(2009), p.111.

Google Scholar