Large Scale Synthesis of Dendritic CdS Nanostrucutres

Article Preview

Abstract:

Single crystalline CdS dendrites were successfully synthesized in high yield by a simple and facile hydrothermal method. The allyl thiourea and CdCl2•5H2O were used as raw materials for the synthesis of dendritic CdS nanostructures for the first time. The as-prepared products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscope and selected area electron diffraction. The results demonstrate that the petal in an individual dendritic CdS nanoarchitecture is single crystalline and prefers growth along the [101] direction. The reaction parameters affected the CdS morphology were investigated systematically. It is found that the morphology of the samples are strongly dependent on the cadmium source, sulfide source, the reaction time and the solvent, the temperature has no effect on the morphology of the products. The possible mechanism was proposed for the formation of dendritic CdS nanostructures

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-190

Citation:

Online since:

January 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. F. Duan, C. M. Niu, V. Sahi, J. Chen, J. W. Parace, S. Empedocles and J. L. Goldman: Nature Vol. 425 (2003), p.274.

Google Scholar

[2] Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz and S. T. Lee: Appl. Phys. Lett. Vol. 85(2004), p.3241.

Google Scholar

[3] J. Zhang, F. H. Jiang and L. D. Zhang: J. Phys. Chem. B Vol. 108 (2004), p.7002.

Google Scholar

[4] M. Agata, H. Kurase, S. Hayashi and K. Yamamoto: Solid State Communications Vol. 76 (1990), p.1061.

DOI: 10.1016/0038-1098(90)90084-o

Google Scholar

[5] B. Ullrich, D. M. Bagnall, H. Sakai and Y. Segawa: Solid State Communications Vol. 109 (1999), p.757.

Google Scholar

[6] M. V. Artemyev, V. Sperling and U. Woggon: J. Appl. Phys. Vol. 81 (1997), p.6975.

Google Scholar

[7] X. F. Duan, Y. Huang, R. Agarwal and C. M. Lieber: Nature Vol. 421 (2003), p.241.

Google Scholar

[8] D. Xu, Z. P. Liu, J. B. Liang and Y. T. Qian: J. Phys. Chem. B Vol. 109 (2005), p.14344.

Google Scholar

[9] J. Yang, J. H. Zeng, S. H. Yu, Y. Li, G. E. Zhou and Y. T. Qian: Chem. Mater. Vol. 12 (2000), p.3259.

Google Scholar

[10] Y. Zhou, Q. M. Ji, M. Masuda, S. Kamiya and T. Shimizu: Chem. Mater. Vol. 18 (2006), p.403.

Google Scholar

[11] B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Z. Wang, M. Niu, W. J. Zhang, Y. Q. Li and S. T. Lee: Adv. Funct. Mater. Vol. 17 (2007), p.1501.

Google Scholar

[12] Y. W. Jun, S. M. Lee, N. J. Kang and J. W. Cheon: J. Am. Chem. Soc. Vol. 123 (2001), p.5150.

Google Scholar

[13] F. Chen, R. J. Zhou, L. G. Yang, N. Liu, M. Wang and H. Z. Chen: J. Phys. Chem. C Vol. 112 (2008), p.1001.

Google Scholar

[14] Y. R. Ma, L. M. Qi, J. M. Ma, H. M. Cheng and W. Shen: Langmuir Vol. 19(2003), p.9079.

Google Scholar

[15] Q. Gong, X. F. Qian, P. L. Zhou, X. B. Yu, W. M. Du and S. H. Xu: J. Phys. Chem. C Vol. 111 (2007), p. (1935).

Google Scholar

[16] R. X. Zhao, X. P. Li and Z. D. Xu: Chinese Journal of Inorganic Chemistry, Vol. 24 (2008), p.1434.

Google Scholar

[17] D. J. Wang, D. S. Li, G. Li, F. Fu, Z. P. Zhang and Q. T. Wei: J. Phys. Chem. C, Vol. 113 (2009), p.5984.

Google Scholar