Correlated Transitions of Pb/PbO Core-Shell Nanoparticles Induced by Electron Beam Irradiation

Article Preview

Abstract:

Nanoscale thermodynamics and kinetics were explored via the manipulation of Pb/PbO core-shell nanoparticles with a focused electron beam which served as a nanometer heating probe. In the electron transmission microscope (TEM), when an electron beam of moderate intensity was used to irradiate the nanoparticles, the amorphous particles gradually crystallized and showed distinct boundaries between lead cores and oxide shells. In such a way, the oxide shell could be easily measured to be 0.5-2 nanometers. With a high intensity electron beam, melting of the lead cores could be observed, indicating a sufficient local temperature increasing induced by the concentrated heat generated by inelastic electron collisions. The fluidic metal core erupted out through the cracked shells accompanied with the vanish of the boundaries between the cores and shells. Manipulations on nanoparticle decorated carbon wires proved that the lead oxide shells could sustain the irradiation of intense electron beam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

199-202

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima and T. Ichihashi, Phys. Rev. Lett. Vol. 56(1986), p.616.

Google Scholar

[2] D. J. Smith, A. K. Petford-Long, L. R. Wallenberg and J. O. Bovin, Science Vol. 233(1986), p.872.

Google Scholar

[3] P. M. Ajayan and L. D. Marks, Phys. Rev. Lett. Vol. 60(1988), p.585.

Google Scholar

[4] P. M. Ajayan and L. D. Marks, Phys. Rev. Lett. Vol. 63(1989), p.279.

Google Scholar

[5] T. David, Y. Lereah, R. Kofman and P. Cheyssac, Phys. Rev. Lett. Vol. 78(1997), p.2585.

Google Scholar

[6] F. Q. Song, M. Han; M. Liu, B. Chen, J. Wan and G. Wang, Phys. Rev. Lett. Vol. 94(2005), p.093401.

Google Scholar

[7] F. Caruso, Adv. Matt. Vol. 13(2001), p.11.

Google Scholar

[8] K. Kataoka, A. Harada and Y. Nagasaki, Adv. Drug. Deliv. Rev. Vol. 47(2001), p.113.

Google Scholar

[9] Q. Zhang, E. E. Remsen and K. L. Wooley, J. Am. Chem. Soc. Vol. 122(2000), p.3642.

Google Scholar

[10] Y. F. Zhu, J. L. Shi, W. H. Shen and X. P. Dong, Angew. Chem. Int. Ed. Vol. 44(2005), p.5083.

Google Scholar

[11] H. C. Zeng, J. Mater. Chem. Vol. 16(2006), p.649.

Google Scholar

[12] L. B. He, B. Xie, F. Q. Song, C. H. Xu and M. Han, Eur. Phys. J. D Vol. 52 (2009), p.15.

Google Scholar

[13] I. Salisbury, R. Timsit, S. Berger and C. Humphreys, Appl. Phys. Lett. Vol. 45(1984), p.1289.

Google Scholar

[14] M. D. Fischbein and M. Drndic, Nanolett Vol. 7( 2007), p.1329.

Google Scholar

[15] M. Han, C.H. Xu, L. Yang, Y. P. Chen, F.Q. Song and G.H. Wang, Adv. Mat. Vol. 19(2007), p.2979.

Google Scholar

[16] Z. L. Wang, J. Phys. Chem. B Vol. 104(2000), p.1153.

Google Scholar

[17] R.F. Egerton, P. Li and M. Malac, Micron. Vol. 35(2004), p.399.

Google Scholar

[18] W. P. Halperin, Rev. Mod. Phys. Vol. 58 (1986), p.533.

Google Scholar