A Label-Free Electrochemical Immunosensor for Carcinoembryonic Antigen Based on Graphene and Thionine

Article Preview

Abstract:

A label-free immunosensor was developed to detect the presence of an antigen. This immunosensor was based on the modulation of the electrochemistry of the surface bound redox species thionine (Thi). The model antigen was carcinoembryonic antigen (CEA) and the model epitope was the antibody of CEA (anti-CEA). Glassy carbon electrode surfaces were first drop-coated with a mixture of graphene, Thi and Nafion and air-dried. The electrode surface was then electrodeposited in HAuCl4 solution to form Au nanoparticles (AuNPs). The resulted AuNPs were used to immobilize anti-CEA. Binding of CEA to the surface bound epitope resulted in the attenuation of the Thi electrochemistry. Under optimal conditions, the response of the label-free immunosensor had a liner range from 10 fg/mL to 100 ng/mL with a detection of 3.5 fg/mL (S/N=3).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-32

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Benchimol, A. Jothy, N. Beauchemin, K. Shirota and C.P. Stanners: Cell Vol. 57 (1989), p.327.

DOI: 10.1016/0092-8674(89)90970-7

Google Scholar

[2] S. Oikawa, C. Inuzuka, M. Kuroki, Y. Matsuoka, G. Kosaki and H. Nakazato: Biochem. Biophys. Res, Commun. Vol. 164 (1989), p.39.

Google Scholar

[3] R. Yuan, Y. Zhou, Y.Q. Chai, Y. Zhang and A.L. Sun: Sci. China Ser. B Vol. 50 (2007), p.97.

Google Scholar

[4] J. Wu, J. Tang, Z. Dai, F. Yan, H. Ju and E.N. Murr: Biosens. Bioelectron. Vol. 22 (2006), p.102.

Google Scholar

[5] A. Kokado, A. Tsuji and M. Maeda: Anal. Chim. Acta Vol. 337 (1997), p.335.

Google Scholar

[6] Y.Y. Zhang, R. Yuan, Y.Q. Chai, Y. Xiang, X.Q. Qian and H.X. Zhang: J. Colloid Interface Sci Vol. 348 (2010), p.108.

Google Scholar

[7] X.B. Sun and Z.F. Ma: Biosens. Bioelectron. Vol. 35 (2012), p.470.

Google Scholar

[8] G.Z. Liu and J.J. Gooding: Electrochem. Commun. Vol. 11 (2009), p. (1982).

Google Scholar

[9] J.P. Li, H.L. Gao, Z.Q. Chen, X.P. Wei and C.F. Yang: Anal. Chim. Acta Vol. 665 (2010), p.98.

Google Scholar

[10] R.M. Wang, X. Chen, J. Ma and Z. F Ma: accepted by Sensors and Actuators B (2012).

Google Scholar

[11] W.T. Shi and Z.F. Ma: Biosens. Bioelectron. Vol. 27 (2011), p.3068.

Google Scholar

[12] N.L. Rosi and C.A. Mirkin: Chem. Rev. Vol. 105 (2005), p.1547.

Google Scholar

[13] C. Rao, A. Sood, K. Subrahmanyam and A. Govindaraj: Angew. Chem. Int. Ed. Vol. 48 (2009), p.7752.

Google Scholar

[14] D. Dreyer, S. Park, C. Bielawski and R. Ruoff: Chem. Soc. Rev. Vol. 39 (2010), 228.

Google Scholar

[15] Y. Shao, J. Wang, H. Wu, J. Liu, I. Aksay and Y. Lin: Electroanalysis Vol. 22 (2010), p.1027.

Google Scholar

[16] W. Yang, K. Ratinac, S. Ringer, P. Thordarson, J. Gooding and F. Braet: Angew. Chem. Int. Ed. Vol. 49 (2010), p.2114.

DOI: 10.1002/anie.200903463

Google Scholar

[17] M. Dresselhau, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito: Nano Lett. Vol. 10 (2010), p.751.

Google Scholar

[18] H. Liu, J. Gao, M.Q. Xue, N. Zhu, M.N. Zhang and T.B. Cao: Langmuir Vol. 25 (2009), p.12006.

Google Scholar

[19] Y. Liu, M.K. Wang, F. Zhao, Z.A. Xu and S.J. Dong: Biosens. Bioelectron. Vol. 21 (2005), p.984.

Google Scholar

[20] Z.P. Chen, Z.F. Peng, P. Zhang, X.F. Jin, J.H. Jiang, X.B. Zhang, G.L. Shen and R.Q. Yu: Talanta Vol. 72 (2007), p.1800.

Google Scholar

[21] Z.J. Song, R. Yuan, Y.Q. Chai, B. Yin, P. Fu and J.F. Wang: Electrochim. Acta Vol. 55 (2010), p.1778.

Google Scholar