Low Temperature CO Oxidation over Cobalt Catalysts Supported on Mesoporous CeO2

Article Preview

Abstract:

Mesoporous CeO2 was first synthesized by hydrothermal method, and then used to synthesize different content of (Co3O4)x/CeO2 (x was the molar ratio of Cu and Co) by deposition-precipitation method. The fresh and doped catalysts were characterized by X-ray diffraction (XRD), N2 adsorption and desorption, H2 temperature programmed reduction (H2-TPR) and O2 temperature programmed desorption (O2-TPD) to study the crystal structure, surface area, and the mechanism of CO oxidation. The results show that: In XRD pattems, the doped cobalt amounts of samples from x=20% to x=100% have Co3O4 crystal structure. The N2 adsorption and desorption indicated the samples were mesoporous structure. Compared with other samples, the better reducibility and activity oxygen species of (Co3O4)50%/CeO2 coincided with its better catalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-82

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Alvarez, S. Ivanova, M.A. Centeno and J.A. Odriozola. Appl. Catal. A-Gen. 431-4329(2012), p.9.

Google Scholar

[2] Y. Martynova, B. Yang, X. Yu, J.A. Boscoboinik, S. Shaikhutdinov and H-J. Freund. Catal. Lett. 142(2012), p.657.

Google Scholar

[3] X.Y. Xiao, J.Q. Lu, X.W. Su, M. Guo and M.F. Luo. Acta. Phy. Chim. Sinica. 25(3)(2009), p.561.

Google Scholar

[4] D.S. Afanasev, O.A. Yakovina, N.I. Kuznetsova and A.S. Lisitsyn. Catal. Commun. 22(2)(2012), p.43.

Google Scholar

[5] C.G. Maciel, L.P.R. Profeti, E.M. Assaf and J.M. Assaf. J. Power Sources. 196(2)(2011), p.747.

Google Scholar

[6] W.J. Shan, W.J. Shen and C. Li. Chem. Mater. 15(2003), p.4761.

Google Scholar

[7] V. Perrichon, L. Retailleu, P. Baizin, M. Daturi and J.C. Lavalley. Appl. Catal. A-Gen. 260(1)(2004), p.1.

Google Scholar

[8] J.X. Lin, L.M. Zhang, R. Wang, J. Ni and K.M. Wei. Chinese J. Inorg. Chem. 28(7)(2012), p.1377.

Google Scholar

[9] H.Y. Kim and G. Henkelman. J. Phys. Chem. Lett. 3(16)(2012), p.2194.

Google Scholar

[10] J.M. Zamaro, N.C. Perez, E.E. Miro, C. Casado, B. Seoane, C. Tellez and J. Coronas. Chem. Eng. J. 195(2012), p.180.

Google Scholar

[11] S.M. Ma, G.Z. Lu, Y.X. Shen, Y. Guo, Y.Q. Wang and Y.L. Guo. Catal. Sci. Technol. 1(4)(2011), p.669.

Google Scholar

[12] K. Chayakul, T. Srithanratana and S. Hengrasmee. Catal. Today. 175(1)(2011), p.420.

Google Scholar

[13] J. Li, P.F. Zhu, S.F. Zuo, Q.Q. Huang and R.X. Zhou. Appl. Catal. A-Gen. 381(1-2)(2010), p.261.

Google Scholar

[14] T. Bao, Z.K. Zhao, Y.T. Dai, X.L. Lin, R.H. Jin, G.R. Wang and T. Muhammad. Appl. Catal. B-Environ. 119(2012), p.62.

Google Scholar

[15] M.P. Woods, P. Gawade, B. Tan and U.S. Ozkan. Appl. Catal. B-Environ. 97(1-2)(2010), p.28.

Google Scholar

[16] C.T. Kresge, M.E. Leonowica, W.J. Roth and J.C. Vartuli. Nature. 359(1992), p.710.

Google Scholar

[17] B. Zhang, X. Tang, Y. Li, W. Cai, Y. Xu and W. Shen. Catal. Commun. 7(6)(2006), p.367.

Google Scholar