Synthesis and Gas Sensing Properties of SnO2-CuO Nanocomposites

Article Preview

Abstract:

SnO2-CuO nanocomposites have been synthesized with the simple co-precipitation method for gas sensing properties. Sn and CuO powder were the starting materials. The synthesized products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that SnO2-CuO nanocomposites have a tetragonal and monoclinic structure, respectively. SEM images verify that the some microballs are up to 10 µm and nanorods have a diameter range from 10-100 nm, while length ranges a few micrometers. The nanocomposite products were highly sensitivity to CO2 gas at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-132

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Noipa and S. Pukird: Adv. Mater. Res. Vol. 93-94 (2010), p.227.

Google Scholar

[2] M.R. Yang, S.Y. Chu and R.C. Chang: Sens. Actuators. B Vol. 122 (2007), p.269.

Google Scholar

[3] L. Xi, D. Qian, X. Tang and C. Chen: Mater. Chem. Phys. Vol. 108 (2008), p.235.

Google Scholar

[4] L.V. Thong, L.T. Loan and N.V. Hieu: Sens. Actuators. B Vol. 150 (2005), p.115.

Google Scholar

[5] L. Li, F. Zong, X. Cui, H. Ma, X. Wu, Q. Zhang, Y. Wang and J. Zhao: Mater. Let. Vol. 61 (2007), p.4155.

Google Scholar

[6] K. Jain, R.P. Pant and S.T. Lakshmikumar: Sens. Actuators. B Vol. 113 (2006), p.823.

Google Scholar

[7] T. Yu, X. Zhao, Z.X. Shen, Y.H. Wu and W. H. Su: J. Crystal Growth, Vol. 268 (2004), p.590.

Google Scholar

[8] K. Yu, Y. Zhang, L. Luo, H. Geng and Z. Zhu: Mater. Let. Vol. 59 (2005), p.3525.

Google Scholar

[9] L. Sun, Z. Zhang, Z. Wang, Z. Wu and H. Dang: Met. Res. Bull Vol. 40 (2005), p.1204.

Google Scholar

[10] C. Zhu, C. Chen, L. Hao, Y. Hu and Z. Chen: J. Crystal Growth, Vol. 263 (2004), p.473.

Google Scholar

[11] W. Zhou and M. Tan: Optik Vol. 123 (2012), p.2171.

Google Scholar

[12] K.Y. Donga, J.K. Choib, I.S. Hwangb, J.W. Leec, B.H. Kanga, D.J. Hama, J.H. Leeb and B.K. Ju: Sens. Actuators. B Vol. 157 (2011), p.154.

Google Scholar

[13] X. Kong and Y. Li: Sens. Actuators. B Vol. 150 (2005), p.449.

Google Scholar

[14] J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo and S. Wu: Sens. Actuators. B Vol. 139(2009), p.369.

Google Scholar

[15] J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu W.Y. Zhou, G. Wang and S.S. Xie : Solid State Commun. Vol. 130 (2004), p.89.

DOI: 10.1016/j.ssc.2004.01.003

Google Scholar

[16] Y. Zhag, K. Yu, G. Li, D. Peng, Q. Zhang, F. Xu, W. Bai, S. Ouyang and Z. Zhu : Mater. Lett. Vol. 60 (2006), p.3109.

Google Scholar

[17] J.K. Jain, X.L. Chen, W.J. Wang, L. Dai and Y.P. Xu: Appl. Phys. A Vol. 76 (2003), p.291.

Google Scholar

[18] C. Zheng, Y. Chu, Y. Dong, Y. Zhan and G. Wang : Mater. Lett. Vol. 59 (2005), p. (2018).

Google Scholar

[19] L. Yue, G.Y. Qun, T.R. Qin, C. Ping,L. Yong and S.W. Jie: Chinese Sci. Bull. Vol 55 (2010), p.581.

Google Scholar

[20] W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng and G. Wang: Appl. Phys. A Vol. 76 (2003), p.417.

Google Scholar

[21] A.S. Ethiraj and D. J. Kang: Nano. Res. Lett. Vol. 7: 70 (2012), pp.1-5.

Google Scholar

[22] X.J. Zheng , Y.J. Wei, L.F. Wei, B. Xie and M.B. Wei: Inter. J. Hydro Energy Vol. 35 (2010), p.11709.

Google Scholar

[23] H. Wang, J. Liang, H Fan, B. Xi, M. Zhang, S. Xiong, Y. Zhu and Y. Qian : J. Solid State Chem. Vol. 181 (2008), p.123.

Google Scholar

[24] J. Liu, X. Huang, G. Ye, W. Lui, Z. Jiao, W. Chao, Z. Zhou and Z. Yu: Sensors Vol. 3 (2003), p.111.

Google Scholar

[25] J.C. Sohn, S.E. Kim, Z.W. Kim and Y.S. Yu: Transaction on Electrical and Electronic Mat. Vol. 10 (2009), p.136.

Google Scholar

[26] A. Chowdhuri, A. Gupta and K. Sreeivas: Rev. Adv. Mater. Sci. Vol. 4 (2003), p.76.

Google Scholar