Synthesis and Characterization of Exotic Carbon Fibers with Branched Spurs Using Nickel Catalyst Precursor

Article Preview

Abstract:

In this paper, we have synt hesized exotic carbon fibers with branched spurs by a chemical vapor deposition method using nickel catalyst precursor at 600 °C. No catalyst particles were found at the base of the carbon spurs, suggesting that the ni ckel catalyst particles, which were decomposed from the nickel catalyst precursor, facilitated the growth of the carbon fibers but not the spurs. The formation of the spurs resulted from the fluctuation of the carbon source gas acetylene flow. The samples were characterized by field emission sc anning electron microscopy, transmission electron microscopy, and X-ray powder diffraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.H. Cuong, V. Ricardo, L. Benoit, C. Alain, A. Julien, D. Thierry, M.J. Ledoux: J. Catal. Vol. 240 (2006), p.194.

Google Scholar

[2] D.C. Wei, Y.Q. Liu, L.C. Cao, L. Fu, X.L. Li, Y. Wang, G. Yu, D.B. Zhu: Nano Lett. Vol. 6 (2006), p.186.

Google Scholar

[3] C.X. Luo, L. Liu, K.L. Jiang, L.N. Zhang, Q.Q. Li, S.S. Fan: Carbon Vol. 46 (2008), p.440.

Google Scholar

[4] N. Gothard, C. Daraio, J. Gaillard, R. Zidan, S. Jin, A.M. Rao: Nano Lett. Vol. 4 (2004), p.213.

Google Scholar

[5] X. Devaux, S.Y. Tsarev, A.N. Kovalenko, E.V. Zharikov, E. McRae: Carbon Vol. 47 (2009), p.1244.

Google Scholar

[6] S. Ma, J.H. Xia, V.V.S.S. Srikanth, X. Sun, T. Staedler, X. Jiang, F. Yang, Z. D. Zhang: Appl. Phys. Lett. Vol. 95 (2009), p.263105.

DOI: 10.1063/1.3272940

Google Scholar

[7] N. Jiang, R. Koie, T. Inaoka, Y. Shintani, K. Nishimura, A. Hiraki: Appl. Phys. Lett. Vol. 81 (2002), p.526.

DOI: 10.1063/1.1494102

Google Scholar

[8] Y.C. Sui, J.A. González-León, A. Bermúdez, J.M. Saniger: Carbon Vol. 39 (2001), p.1709.

Google Scholar

[9] J. Cheng, X.P. Zou, H.D. Zhang, F. Li, P.F. Ren, G. Zhu, Y. Su, M.F. Wang: Nanoscale Res. Lett. Vol. 3 (2008), p.295.

Google Scholar

[10] S.H. Durbach, R.W. Krause, M.J. Witcomb, N.J. Coville: Carbon Vol. 47 (2009), p.635.

Google Scholar

[11] Y.C. Choi, W. Choi: Carbon Vol. 43 (2005), p.2737.

Google Scholar

[12] S. Takenaka, M. Ishida, M. Serizawa, E. Tanabe, K. Otsuka: J. Phys. Chem. B Vol. 108 (2004), p.11464.

Google Scholar

[13] J.A. Rodríguez-Manzo, M.S. Wang, F. Banhart, Y. Bando, D. Golberg: Adv. Mater. Vol. 21 (2009), p.4477.

Google Scholar

[14] T. Nemes, A. Chambers, R.T.K. Baker, J Phys. Chem. B Vol. 102 (1998), p.6323.

Google Scholar

[15] Q. Zhang, F.L. Du, L.F. Dong, C.C. Hao: Mater. Lett. Vol. 65 (2011), p.2779.

Google Scholar

[16] Q. Zhang, Z.L. Cui: Mater. Lett. Vol. 63 (2009), p.850.

Google Scholar

[17] X.Y. Zhao, X. Lu, W.T.Y. Tze, P. Wang: Biosens. Bioelectron. Vol. 25 (2010), p.2343.

Google Scholar

[18] X.Y. Tao, X.B. Zhang, L. Zhang, J.P. Cheng, F. Liu, J.H. Luo, Z.Q. Luo a, H.J. Geise: Carbon Vol. 44 (2006), p.1425.

Google Scholar

[19] N.J. Tang, W. Zhong, C.T. Au, Y. Yang, M.G. Han, K.J. Lin, Y.W. Du: J. Phys. Chem. C Vol. 112 (2008), p.19316.

Google Scholar