Catalytic Synthesis and Growth Mechanism of Multi-Branched Carbon Fibers by Cupric Solution Precursors

Article Preview

Abstract:

Carbon fibers with different morphologies are obtained using different cupric solution precursors (e.g., cupric sulfate, cupric nitrate, and cupric chloride) at various temperatures. The morphology of carbon fibers depends on the type of catalyst precursor and reaction temperature but not the concentration of the precursor solution. For example, cupric chloride solution is a desirable catalyst precursor for the growth of carbon fibers with multi-branches at 450 °C. However, a mixture of carbon sheets and linear fibers forms at 300-350 °C. The splitting mode can be used to explain the formation of carbon fibers with different morphologies at various reaction temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-29

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Tel-Vered, D.A. Walsh, M.A. Mehrgardi and A.J. Bard: Analytical chemistry Vol. 78 (2006), p.6959.

Google Scholar

[2] X. Liu, W. Ji, Y. Zhang, Y. Yang and B. Xu: Carbon Vol. 46 (2008), p.154.

Google Scholar

[3] G. Wei, H. Saitoh, K. Fujiki, T. Yamauchi and N. Tsubokawa: Polymer Bulletin Vol. 60 (2008), p.219.

Google Scholar

[4] M.S. Wu, J.T. Lee, P.C.J. Chiang and J.C. Lin: J. Mater. Sci. Vol. 42 (2006), p.259.

Google Scholar

[5] M.H. Al-Saleh and U. Sundararaj: Carbon Vol. 47 (2009), p.2.

Google Scholar

[6] G. Sui, B. Li, G. Bratzel, L. Baker, W.H. Zhong and X.P. Yang: Soft Matter Vol. 5 (2009), p.3593.

Google Scholar

[7] G. Li, T. Xie, S. Yang, J. Jin and J. Jiang: J. Phys. Chem. C. Vol. 116 (2012), p.9196.

Google Scholar

[8] N. Tang, Y. Yang, K. Lin, W. Zhong, C. Au and Y. Du: J. Phys. Chem. C. Vol. 112 (2008), p.10061.

Google Scholar

[9] M.K. van der Lee, A.J. van Dillen, J.W. Geus, K.P. de Jong and J.H. Bitter: Carbon Vol. 44 (2006), p.629.

DOI: 10.1016/j.carbon.2005.09.031

Google Scholar

[10] T. Song, D.H. Lee, M.S. Kwon, J.M. Choi, H. Han, S.G. Doo, H. Chang, W. Park, W. Sigmund, H. Kim and U. Paik: J. Mater. Chem. Vol. 21 (2011), p.12619.

DOI: 10.1039/c1jm12511g

Google Scholar

[11] W.L. Yao, J.Q. Chen and H.W. Cheng: J. Solid State Electrochem. Vol. 15 (2011), p.183.

Google Scholar

[12] X.Y. Tao, X.B. Zhang, L. Zhang, J.P. Cheng, F. Liu, J.H. Luo, Z.Q. Luo and H.J. Geise: Carbon Vol. 44 (2006), p.1425.

Google Scholar

[13] X. Lu, J. Zhou, W. Lu, Q. Liu and J. Li: Biosens. Bioelectron. Vol. 23 (2008), p.1236.

Google Scholar

[14] J. Wang and Y.H. Lin: Trac – Trends Anal. Chem. Vol. 27 (2008), p.619.

Google Scholar

[15] Y. Qin, Y. Zhang and X. Sun: Microchimica Acta. Vol. 164 (2008), p.425.

Google Scholar

[16] Q. Zhang and Z.L. Cui: Journal of Functional Materials (In Chinese) Vol. 39 (2008), p.151.

Google Scholar

[17] X. Tao, X. Zhang, J. Cheng, F. Liu, J. Luo and Z. Luo: Chemical Vapor Deposition Vol. 12 (2006), p.353.

Google Scholar

[18] Y.F. Shi, H.J. Quan, G.B. Zheng, H. Sano and Y. Uchiyama: J. Mater. Sci. Vol. 39 (2004), p.1495.

Google Scholar

[19] C. P. Deck and K. Vecchio: Carbon Vol. 44 (2006), p.267.

Google Scholar

[20] J. Li, C. Papadopoulos and J. Xu: Nature (London) Vol. 402 (1999), p.253.

Google Scholar

[21] D.Y. Ding, J.N. Wang, F. Yu and L.F. Su: Appl. Phys. A-Mater. Vol. 81 (2005), p.805.

Google Scholar

[22] Q. Liu, W. Liu, Z.M. Cui, W.G. Song and L.J. Wan: Carbon Vol. 45 (2007), p.268.

Google Scholar

[23] C. Luo, L. Liu, K. Jiang, L. Zhang, Q. Li and S. Fan: Carbon Vol. 46 (2008), p.440.

Google Scholar