Investigating the Interaction Mechanism of Gold Nanoparticles with Mercapto Amino Acids

Article Preview

Abstract:

Biomolecule functionalized gold nanoparticles offer a broad range of applications in biomedical and bioanalytical areas. In this work, we investigated the spectroscopy behavior of gold nanoparticles modified with mercapto amino acid, cysteine. We found that the interaction of gold nanoparticles with cysteine resulted in a shift in the plasmon bands to higher wavelengths at the lower concentration of cysteine and in acidity solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-46

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Zheng, X. Huang, Biofunctionalization of gold nanoparticles, in: C.S.S.R. Kumar (Ed. ), Biofunctionalization of Nanomaterials, Wiley–VCH, Chichester, 2005, p.99–124.

Google Scholar

[2] D. Fitzmaurice, S. Connolly, Programmed assembly of gold nanocrystals in aqueous solutions, Adv. Mater. 11 (1999) 1202–1205.

DOI: 10.1002/(sici)1521-4095(199910)11:14<1202::aid-adma1202>3.0.co;2-h

Google Scholar

[3] S. Mann,W. Shenton,M. Li, S. Connolly, D. Fitzmaurice, Biologicallyprogrammed nanoparticle assembly, Adv. Mater. 12 (2000) 147–150.

DOI: 10.1002/(sici)1521-4095(200001)12:2<147::aid-adma147>3.0.co;2-u

Google Scholar

[4] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum- size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293–346.

DOI: 10.1021/cr030698+

Google Scholar

[5] N.L. Rosi, C.A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev. 105 (2005)1547–1562.

DOI: 10.1021/cr030067f

Google Scholar

[6] J.C. Love, L.A. Estroff, J.K. Knebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105(2005) 1103–1170.

DOI: 10.1021/cr0300789

Google Scholar

[7] C.M. Niemeyer, Angew. Chem. Int. Ed 40 (2001) 4128.

Google Scholar

[8] C.C. You, M. De, G. Han, V.M. Rotello, Tunable inhibition and denaturation. of chymotrypsin with amino acid-functionalized gold nanoparticles,J. Am. Chem. Soc. 127 (2005) 12873–12881.

DOI: 10.1021/ja0512881

Google Scholar

[9] Tengvall,P.; Lestelius, M.; Liedberg, B.; Lundstroem, I. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 1992, 8(5), 1236-1238.

DOI: 10.1021/la00041a001

Google Scholar

[10] Wu,Y.; Liu,L.; Liang,Z.; Shen, Z; Zhu,X. Colorimetric and electrochemical study and the interaction between gold nanoparticles and unmodified DNA. Curr. Nanosci., 2011, 7(3), 359-365.

DOI: 10.2174/157341311795542372

Google Scholar

[11] Kasthuri, J.; Rajendiran, N. Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance. Colloids Surf. B: Biointerf., 2009, 73, 387-393.

DOI: 10.1016/j.colsurfb.2009.06.012

Google Scholar

[12] Zhong, Z.; Patskovsky, S.; Bouvrette, P.; Luong, H.T.; Gedanken, A. The surface chemistry of Au colloids and their interactions with functional amino acids. J. Phys. Chem. B, 2004, 108(13), 4046-4052.

DOI: 10.1021/jp037056a

Google Scholar

[13] Zhang, F.X.; Han, L.; Israel, L.B.; Daras, J.G.; Maye, M.M.; Ly, N.K.; Zhong, C. Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst, 2002, 127, 462-465.

DOI: 10.1039/b200007e

Google Scholar

[14] Ravindran, A.; Singh, A.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin(BSA). Colloid. Surface B, 2010, 76(1), 32-37.

DOI: 10.1016/j.colsurfb.2009.10.005

Google Scholar

[15] Yoo, E.J.; Li, T.; Park, H.G.; Chang, Y.K. Size dependent flocculation behavior of colloidal Au nanoparticles modified with various biomolecules. Ultramicroscopy, 2008, 108(10), 1273-1277.

DOI: 10.1016/j.ultramic.2008.04.051

Google Scholar

[16] Mocanu, A.; Cernica, I.; Tomoaia, G.; Bobos, L.; Horovitz, O.; Cotisel, M.T. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids Surf. A: Physicochem. Eng. Aspects, 2009, 338, 93-101.

DOI: 10.1016/j.colsurfa.2008.12.041

Google Scholar

[17] Aryal, S.; Remant, B.K.; Narayan, B.; Kim, C.H.; Kim,; Y. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J. Colloid. Interf. Sci., 2006, 299(1), 191-197.

DOI: 10.1016/j.jcis.2006.01.045

Google Scholar

[18] Lim, I.S.; Mott, D.; Ip, W.; Njoki, P.N.; Pan, N.; Zhou, S.; Zhong, C. Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir, 2008, 24(16), 8857-8863.

DOI: 10.1021/la800970p

Google Scholar

[19] Aryal, S.; Remant, B.K.C.; Dharmaraj, N.; Bhattarai, N.; Kim, C.H.; Kim H.Y. Spectroscopic identification of S-Au interaction of cysteine capped gold nanoparticles. Spectrochim. Acta A, 2006, 63(1), 160-163.

DOI: 10.1016/j.saa.2005.04.048

Google Scholar

[20] S. Aryal, B.K.C. Remant, N. Dharmaraj, N. Bhattarai, C.H. Kim, H.Y. Kim, Spectroscopic identification of S–Au interaction in cysteine capped gold nanoparticles, Spectrochim. Acta A 63 (2006) 160–163.

DOI: 10.1016/j.saa.2005.04.048

Google Scholar

[21] Z.P. Li, X.R. Duan, C.H. Liu, B.A. Du, Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles, Anal. Biochem. 351 (2006) 18–25.

DOI: 10.1016/j.ab.2006.01.038

Google Scholar

[22] M.A. Hayat, Colloidal Au (Principles, Methods, and Applications), vol. 1, Academic Press, New York, 1989, p.13–32.

Google Scholar

[23] J.C. Peng X.D. Liu X.P. Ding Z.J. Fu,Q.L. Wang, Evaluation of the particle diameter of colloidal gold and its distribution through visible spectroscopy, J. Bull Acad Mil Med Sci. 24 (2000) In Chinese.

Google Scholar