[1]
M. Zheng, X. Huang, Biofunctionalization of gold nanoparticles, in: C.S.S.R. Kumar (Ed. ), Biofunctionalization of Nanomaterials, Wiley–VCH, Chichester, 2005, p.99–124.
Google Scholar
[2]
D. Fitzmaurice, S. Connolly, Programmed assembly of gold nanocrystals in aqueous solutions, Adv. Mater. 11 (1999) 1202–1205.
DOI: 10.1002/(sici)1521-4095(199910)11:14<1202::aid-adma1202>3.0.co;2-h
Google Scholar
[3]
S. Mann,W. Shenton,M. Li, S. Connolly, D. Fitzmaurice, Biologicallyprogrammed nanoparticle assembly, Adv. Mater. 12 (2000) 147–150.
DOI: 10.1002/(sici)1521-4095(200001)12:2<147::aid-adma147>3.0.co;2-u
Google Scholar
[4]
M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum- size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293–346.
DOI: 10.1021/cr030698+
Google Scholar
[5]
N.L. Rosi, C.A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev. 105 (2005)1547–1562.
DOI: 10.1021/cr030067f
Google Scholar
[6]
J.C. Love, L.A. Estroff, J.K. Knebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105(2005) 1103–1170.
DOI: 10.1021/cr0300789
Google Scholar
[7]
C.M. Niemeyer, Angew. Chem. Int. Ed 40 (2001) 4128.
Google Scholar
[8]
C.C. You, M. De, G. Han, V.M. Rotello, Tunable inhibition and denaturation. of chymotrypsin with amino acid-functionalized gold nanoparticles,J. Am. Chem. Soc. 127 (2005) 12873–12881.
DOI: 10.1021/ja0512881
Google Scholar
[9]
Tengvall,P.; Lestelius, M.; Liedberg, B.; Lundstroem, I. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 1992, 8(5), 1236-1238.
DOI: 10.1021/la00041a001
Google Scholar
[10]
Wu,Y.; Liu,L.; Liang,Z.; Shen, Z; Zhu,X. Colorimetric and electrochemical study and the interaction between gold nanoparticles and unmodified DNA. Curr. Nanosci., 2011, 7(3), 359-365.
DOI: 10.2174/157341311795542372
Google Scholar
[11]
Kasthuri, J.; Rajendiran, N. Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance. Colloids Surf. B: Biointerf., 2009, 73, 387-393.
DOI: 10.1016/j.colsurfb.2009.06.012
Google Scholar
[12]
Zhong, Z.; Patskovsky, S.; Bouvrette, P.; Luong, H.T.; Gedanken, A. The surface chemistry of Au colloids and their interactions with functional amino acids. J. Phys. Chem. B, 2004, 108(13), 4046-4052.
DOI: 10.1021/jp037056a
Google Scholar
[13]
Zhang, F.X.; Han, L.; Israel, L.B.; Daras, J.G.; Maye, M.M.; Ly, N.K.; Zhong, C. Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst, 2002, 127, 462-465.
DOI: 10.1039/b200007e
Google Scholar
[14]
Ravindran, A.; Singh, A.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin(BSA). Colloid. Surface B, 2010, 76(1), 32-37.
DOI: 10.1016/j.colsurfb.2009.10.005
Google Scholar
[15]
Yoo, E.J.; Li, T.; Park, H.G.; Chang, Y.K. Size dependent flocculation behavior of colloidal Au nanoparticles modified with various biomolecules. Ultramicroscopy, 2008, 108(10), 1273-1277.
DOI: 10.1016/j.ultramic.2008.04.051
Google Scholar
[16]
Mocanu, A.; Cernica, I.; Tomoaia, G.; Bobos, L.; Horovitz, O.; Cotisel, M.T. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids Surf. A: Physicochem. Eng. Aspects, 2009, 338, 93-101.
DOI: 10.1016/j.colsurfa.2008.12.041
Google Scholar
[17]
Aryal, S.; Remant, B.K.; Narayan, B.; Kim, C.H.; Kim,; Y. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J. Colloid. Interf. Sci., 2006, 299(1), 191-197.
DOI: 10.1016/j.jcis.2006.01.045
Google Scholar
[18]
Lim, I.S.; Mott, D.; Ip, W.; Njoki, P.N.; Pan, N.; Zhou, S.; Zhong, C. Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir, 2008, 24(16), 8857-8863.
DOI: 10.1021/la800970p
Google Scholar
[19]
Aryal, S.; Remant, B.K.C.; Dharmaraj, N.; Bhattarai, N.; Kim, C.H.; Kim H.Y. Spectroscopic identification of S-Au interaction of cysteine capped gold nanoparticles. Spectrochim. Acta A, 2006, 63(1), 160-163.
DOI: 10.1016/j.saa.2005.04.048
Google Scholar
[20]
S. Aryal, B.K.C. Remant, N. Dharmaraj, N. Bhattarai, C.H. Kim, H.Y. Kim, Spectroscopic identification of S–Au interaction in cysteine capped gold nanoparticles, Spectrochim. Acta A 63 (2006) 160–163.
DOI: 10.1016/j.saa.2005.04.048
Google Scholar
[21]
Z.P. Li, X.R. Duan, C.H. Liu, B.A. Du, Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles, Anal. Biochem. 351 (2006) 18–25.
DOI: 10.1016/j.ab.2006.01.038
Google Scholar
[22]
M.A. Hayat, Colloidal Au (Principles, Methods, and Applications), vol. 1, Academic Press, New York, 1989, p.13–32.
Google Scholar
[23]
J.C. Peng X.D. Liu X.P. Ding Z.J. Fu,Q.L. Wang, Evaluation of the particle diameter of colloidal gold and its distribution through visible spectroscopy, J. Bull Acad Mil Med Sci. 24 (2000) In Chinese.
Google Scholar