Dielectric Behaviour of Nanocrystalline Ni-Zn Ferrites Prepared by Oxalate Co-Precipitation Method

Article Preview

Abstract:

Nickel–zinc ferrites with chemical formula Ni1-xZnxFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) were prepared by oxalate co-precipitation method. The dielectric constant (ε') dielectric loss (tanδ) and AC conductivity (σac) of all the samples were determined at room temperature in the frequency range 20Hz -1MHz. The dielectric constant and dielectric loss are much smaller than those for samples prepared by ceramic method. The dielectric behaviour is attributed to the Maxwell–Wagner type interfacial polarization. AC conductivity of all the samples lies in the range 1.20×10-8 to 54.7×10-8 Ω-1cm-1. Low dielectric loss and high resistivity suggest the suitability of these ferrites for high frequency applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-59

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Igarash, K. Okazaki, J. Am. Ceram. Soc., Vol. 60 (1-2) (2006), p.51.

Google Scholar

[2] T. Abraham,. Am. Ceram. Soc. Bull., Vol. 73 (8) (1994), p.62.

Google Scholar

[3] A. M. Abdeen, J. Magn. Magn. Mater., Vol. 192 (1999), p.121.

Google Scholar

[4] P. Yadogi, R. Peelamedu, D. Agrawal, R. Roy, Mater. Sci. Eng. B, Vol. 98 (2003), p.269.

Google Scholar

[5] B. P. Rao, K. H. Rao, Rao T. Vasantha, A. Paduraru, O. F. Catun, J. Opt. Advan. Mater., Vol. 7 (2) (2005), p.701.

Google Scholar

[6] A. Narayansamy, N. Sivakumar, Bull. Mater. Sci., Vol. 31(3) (2005), p.373.

Google Scholar

[7] M. Ajmal, A. Maqsood, Mater. Lett., Vol. 62 (14) (2008), p. (2077).

Google Scholar

[8] S. Deka, P. A. Joy, J. Am. Ceram. Soc., Vol. 90 (5) (2007), p.1494.

Google Scholar

[9] J. Azadmanjiri, Mater. Chem. Phys., Vol. 109 (1) (2008), p.109.

Google Scholar

[10] T. J. Shinde, A. B. Gadkari, P. N. Vasambekar, Mater. Chem. Phys., Vol. 111 (2008), p.87.

Google Scholar

[11] J. C. Maxwell, A Treatise on Electricity and magnetism, Oxford University Press, New York, 1973, p.828.

Google Scholar

[12] K. W. Wagner, Ann. Phys., Vol. 40 (1913), p.817.

Google Scholar

[13] C. G. Koop's, Phys. Rev., Vol. 83 (1) (1951), p.121.

Google Scholar

[14] K. J. Standely, Oxide Magnetic Materials, 2nd Ed., Clarendon Press Oxford, 1972, p.140.

Google Scholar

[15] K. Iwauchi, Jap. J. Appl. Phys., Vol. 10 (1971), p.1520.

Google Scholar

[16] L. T. Rabinkin, Z. I. Novikava, Ferrites, Izv. Acad. Nauk. USSR, Minsk, 1960, p.146.

Google Scholar

[17] N. Rezlescu, E. Rezlescu, Phys. Status Solidi (a), Vol. 23 (1974), p.575.

Google Scholar

[18] D. R. Secrist, H. L. Turk, J. Am. Ceram. Soc., Vol. 53 (12) (2006), p.683.

Google Scholar

[19] A. Verma, T. C. Goel, R.G. Mendiratta, Mater. Sci. Eng. B, Vol. 60 (1999), p.156.

Google Scholar

[20] A. Verma, D. C. Dube, J. Am. Ceram. Soc., Vol. 88(3) (2005), p.519.

Google Scholar

[21] R. Waser, J. Am. Ceram. Soc., Vol. 74 (8) (1991), p. (1934).

Google Scholar

[22] B. P. Rao, K. H. Rao, G. Sankaranarayana, A. Paduraru, O. F. Caltun, J. Opto. Advan. Mater., Vol. 7(2) (2005), p.697.

Google Scholar

[23] M. Lal, D. K. Sharma, M. Singh, Ind. J. App. Phys., Vol. 43 (2005), p.291.

Google Scholar

[24] M. A. El Hiti, J. Phys. D. Appl. Phys., Vol. 29 (1996), p.501.

Google Scholar

[25] S. Sindhu, M. R. Anantharaman, B. P. Thampi, K. A. Malini, Philip Kurian, Bull. Mater. Sci., Vol. 25 (7) (2002), p.599.

DOI: 10.1007/bf02707892

Google Scholar