Molecular Optical Switches Based on [Ru(OAC)(2MQN)2NO](H2MQN=2-methyl-8-quinolinol)

Article Preview

Abstract:

Reversible photoisomerization between the cis and trans isomer of [Ru(OAc)(2mqn)2NO] (H2mqn=2-methyl-8-quinolinol) was studied quantitatively, using 1H Nuclear magnetic resonance (NMR) spectra. The kinetic study showed that the photoisomerization from trans to cis isomer was first-order and the rate constant (k) is 0.014 (min-1) at 420 nm, 0.0034 (min-1) at 550 nm, respectively. The main absorption band in UV-Vis region for cis and trans isomer was observed from 300 nm to 550 nm, the electronic structure of these compounds was performed with DFT (Density functional theory) calculation and was discussed based on HOMO–LUMO analyses. The study provide detail information to design advance optoelectronic materials based on nitrosylruthenium(II) complexes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-63

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie: Nature Vol. 446 (2007), p.778.

Google Scholar

[2] J.A. Ihalainen, J. Bredenbeck, R. Pfister, J. Helbing, L. Chi, I.H. van Stokkum, G.A. Woolley and P. Hamm: Proc Natl Acad Sci U S A Vol. 104 (2007), p.5383.

DOI: 10.1073/pnas.0607748104

Google Scholar

[3] M.B. Duriska, S.M. Neville, B. Moubaraki, J.D. Cashion, G.J. Halder, K.W. Chapman, C. Balde, J.F. Létard, K.S. Murray, C.J. Kepert and S.R. Batten: Angew Chem Int Ed Engl Vol. 48 (2009), p.2549.

DOI: 10.1002/anie.200805178

Google Scholar

[4] M. Goulkov, D. Schaniel, T. Woike: J. Opt. Soc. Am. B Vol. 27 (2010), p.927.

Google Scholar

[5] S.O. Sylvester, J.M. Cole, P.G. Waddell : J. Am. Chem. Soc Vol. 134 (2012), p.11860.

Google Scholar

[6] B.A. McClure, E.R. Abrams, J.J. Rack: J. Am. Chem. Soc Vol. 132 (2010), p.5428.

Google Scholar

[7] C.C. Chou, K.L. Wu, Y. Chi, W.P. Hu, S.J. Yu, G.H. Lee, C.L. Lin, P.T. Chou: Angew. Chem. Intl. Ed Vol. 50 (2011), p. (2054).

Google Scholar

[8] K. Miki, H. Tomizawa, H. lkezawa, E. Miki: Inorg. Chim. Acta Vol. 257 (1997), p.3.

Google Scholar

[9] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Gaussian, Inc., Wallingford CT, (2009).

Google Scholar

[10] C. Lee, W. Yang and R.G. Parr: Phys. Rev. B Vol. 37 (1988), p.785.

Google Scholar

[11] J.P. Perdew, K. Burke and Y. Wang: Phys. Rev. B Vol. 54 (1996), p.16533.

Google Scholar

[12] J.R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch: J. Chem. Phys Vol. 104 (1996), p.5497.

Google Scholar

[13] K.N. Mohammad, D.A. Filippo, F. Simona, S. Annabella, G. Viscardi, L. Paul, I. Seigo, T. Bessho and G. Michae: J. Am. Chem. Soc Vol. 127 (2005), p.16835.

Google Scholar

[14] D.A. Lutterman, A.A. Rachford, J.J. Rack and C. Turro: J Phys Chem A. Vol. 113 (2009), p.11002.

Google Scholar

[15] G. Gerbaud, J.M. Mouesca, S. Hediger, S. Chardon-Noblat, F. Lafolet, A. Deronzier and M. Bardet: Phys Chem Chem Phys Vol. 12 (2010), p.15428.

DOI: 10.1039/c0cp00487a

Google Scholar

[16] Q.J. Pan , Y.R. Guo, L. Li , S.O. Odoh, H.G. Fu and H.X. Zhang: Phys Chem Chem Phys. Vol. 13 (2011), p.14481.

Google Scholar