Measurement of Light Attenuation in Phantom Tissue Embedded with Gold Nanoshells

Article Preview

Abstract:

Light attenuation in phantom tissue embedded with gold nanoshells is measured using a photospectrometer with an integrated sphere system. Gold nanoshells are synthesized and a paste is made by mixing them with agar (or phantom tissue); from which slab samples of different nanoshell concentrations and thicknesses are prepared. Light attenuation is measured as a function of light exciting frequencies, nanoshell concentrations and tissue thickness. The nanoshell particle concentrations are determined by matching the Mie solution for a single nanoshell with the measured attenuation coefficient at the local surface plasma resonance frequency. For the range of the concentrations studied, light attenuation is linearly dependent on the nanoshell concentration, and thus the rule of independent scattering/absorption is observed. The frequency of exciting light strongly affects light attenuation in a nanoshell-populated medium, with the largest attenuation occurring at the local surface plasma resonance frequency of the nanoshells, which is consistent with theoretical predictions. For the measured samples of phantom tissue populated with nanoshells, the optical thickness is about ~8 mm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-238

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Prodan, A. Lee, and P. Nordlander, Chemical Physics Letters Vol. 360 (2002), p.325.

Google Scholar

[2] E. Hao, S.Y. Li, R.C. Bailey, S. l. Zou, G.C. Schatz, and J.T. Hupp, J. Phys. Chem. B, Vol. 108 (2004) , p.1224.

Google Scholar

[3] L. R. Hirsch, R. J. Stafford and J. A. Bankson, PNAS 2003, vol. 100(23), p.13549.

Google Scholar

[4] D. P. O'Neal, L. R. Hirsch and N. J. Halas, Cancer Letters, Vol. 209(2004), p.171.

Google Scholar

[5] C. Loo, L. Hirsch and M.H. Lee, Optical Letters, Vol. 30(9)(2005), p.1012.

Google Scholar

[6] C. Loo, A. Lowery, N.J. Halas, J.L. West and R. Drezek, Nano Letters, Vol. 5(4)(2005), p. 709A. M. Gobin, M. H. Lee and N. J. Halas, Nano Letters, vol. 7(7) (2007), p. (1929).

DOI: 10.1021/nl050127s

Google Scholar

[7] J. G. Fujimoto, M. E. Brezinski, G. T. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, Nature Medicine, Vol. 1(9)(1995) , p.970.

DOI: 10.1038/nm0995-970

Google Scholar

[9] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. Vol. 66(2003) , p.239.

Google Scholar

[10] W. Drexler , J. Bio. Opt., vol. 9(1)(2004) , p.47.

Google Scholar

[11] C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, Nano Lett., vol. 4 (12) (2004), p.2355.

DOI: 10.1021/nl048610a

Google Scholar

[12] J. C. Y. Kah, T. H. Chow, B. Ng, S. G. Razul, M. Olivo, and C. J. R. Sheppard, APPLIED OPTICS , Vol. 48 (10)(2009), p.96.

Google Scholar

[13] A.I. Kholodnykh, IEEE J. SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol. 9( 2)(2003), p.210.

Google Scholar

[14] S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, Langmuir , Vol. 14 (1998), p.5396.

Google Scholar

[15] T. Pham, J. B. Jackson, N. J. Halas and T. R. Lee, Langmuir, Vol. 18 (2002), p.4915.

Google Scholar

[16] S. Liu,Z. Liang, F. Gao, J. Yu, S. Luo, J. N. Calata, and G, Lu, Chinese Journal of Chemistry, Vol. 27(6) (2009), p.1079.

Google Scholar

[17] A. Yella, Light Attenuation and Temperature Distribution in a Thin Slab of Agar Embedded With Gold Nanoshells, M.S. Thesis, University of Michigan, Dearborn, MI, (2011).

Google Scholar

[18] W. Stober, A. Fink and E. Bohn, Vol. 26 (1968), p.62.

Google Scholar

[19] R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer. Third edition. ( Hemisphere Publishing Corporation, Washington, DC, 1992).

Google Scholar

[20] M. F. Modest, Radiative Heat Transfer. (McGraw-Hill, Inc., New York, 1993).

Google Scholar