Evolution Analysis of the Circadian Clock Protein KaiB

Article Preview

Abstract:

Regulation of daily physiological functions with approximate a 24-hour periodicity, or circadian rhythms, is a characteristic of eukaryotes. So far, cyanobacteria are only known prokaryotes reported to possess circadian rhythmicity. The circadian system in cyanobacteria comprises both a post-translational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO can be reconstituted in vitro with three purified proteins (KaiA, KaiB, and KaiC) with the existence of ATP. Phase of the nanoclockwork has been associated with the phosphorylation states of KaiC, with KaiA promoting the phosphorylation of KaiC, and KaiB de-phosphorylating KaiC. Here we studied the evolution of the KaiB protein. The result will be helpful in understanding the evolution of the circadian clock system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-395

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. H. Johnson, P. L. Stewart, and M. Egli, The Cyanobacterial Circadian System: From Biophysics to Bioevolution, Annu. Rev. Biophys., vol. 40, no. 1, p.143–167, Jun. (2011).

DOI: 10.1146/annurev-biophys-042910-155317

Google Scholar

[2] M. Ishiura, Expression of a Gene Cluster kaiABC as a Circadian Feedback Process in Cyanobacteria, Science, vol. 281, no. 5382, p.1519–1523, Sep. (1998).

DOI: 10.1126/science.281.5382.1519

Google Scholar

[3] T. Kondo, C. A. Strayer, R. D. Kulkarni, W. Taylor, M. Ishiura, S. S. Golden, and C. H. Johnson, Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria., Proc. Natl. Acad. Sci. U.S.A., vol. 90, no. 12, p.5672–5676, Jun. (1993).

DOI: 10.1073/pnas.90.12.5672

Google Scholar

[4] M. NAKAJIMA, Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro, Science, vol. 308, no. 5720, p.414–415, Apr. (2005).

DOI: 10.1126/science.1108451

Google Scholar

[5] H. KAGEYAMA, Circadian Formation of Clock Protein Complexes by KaiA, KaiB, KaiC, and SasA in Cyanobacteria, Journal of Biological Chemistry, vol. 278, no. 4, p.2388–2395, Nov. (2002).

DOI: 10.1074/jbc.m208899200

Google Scholar

[6] Y. Taniguchi, A. Yamaguchi, A. Hijikata, H. Iwasaki, K. Kamagata, M. Ishiura, M. Go, and T. Kondo, Two KaiA-binding domains of cyanobacterial circadian clock protein KaiC., FEBS Letters, vol. 496, no. 2, p.86–90, May (2001).

DOI: 10.1016/s0014-5793(01)02408-5

Google Scholar

[7] Y. Kitayama, H. Iwasaki, T. Nishiwaki, and T. Kondo, KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system., The EMBO Journal, vol. 22, no. 9, p.2127–2134, May (2003).

DOI: 10.1093/emboj/cdg212

Google Scholar

[8] S. B. Williams, I. Vakonakis, S. S. Golden, and A. C. LiWang, Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism, Proc. Natl. Acad. Sci. U.S.A., vol. 99, no. 24, p.15357, (2002).

DOI: 10.1073/pnas.232517099

Google Scholar

[9] X. Qin, M. Byrne, T. Mori, P. Zou, D. R. Williams, H. Mchaourab, and C. H. Johnson, Intermolecular associations determine the dynamics of the circadian KaiABC oscillator, Proc. Natl. Acad. Sci. U.S.A., vol. 107, no. 33, p.14805–14810, (2010).

DOI: 10.1073/pnas.1002119107

Google Scholar

[10] H. KAGEYAMA, T. Nishiwaki, M. NAKAJIMA, H. Iwasaki, T. Oyama, and T. Kondo, Cyanobacterial Circadian Pacemaker: Kai Protein Complex Dynamics in the KaiC Phosphorylation Cycle In Vitro, Molecular Cell, vol. 23, no. 2, p.161–171, Jul. (2006).

DOI: 10.1016/j.molcel.2006.05.039

Google Scholar

[11] R. Pattanayek, D. R. Williams, S. Pattanayek, T. Mori, C. H. Johnson, P. L. Stewart, and M. Egli, Structural model of the circadian clock KaiB–KaiC complex and mechanism for modulation of KaiC phosphorylation, The EMBO Journal, vol. 27, no. 12, p.1767–1778, May (2008).

DOI: 10.1038/emboj.2008.104

Google Scholar

[12] J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix …, Nucleic Acids Research, (1994).

DOI: 10.1093/nar/22.22.4673

Google Scholar

[13] K. Tamura, D. Peterson, N. Peterson, and G. Stecher, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Molecular biology and …, (2011).

DOI: 10.1093/molbev/msr121

Google Scholar

[14] V. Dvornyk, O. Vinogradova, and E. Nevo, Origin and evolution of circadian clock genes in prokaryotes., Proc. Natl. Acad. Sci. U.S.A., vol. 100, no. 5, p.2495–2500, Mar. (2003).

DOI: 10.1073/pnas.0130099100

Google Scholar