[1]
Z. Li, J. Guan. Thermosensitive hydrogels for drug delivery. Exp Opin Drug Del. 8(2011): 991-1007.
Google Scholar
[2]
L. Wei, C.H. Cai, J.P. Lin, et. al. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials. 30(2009): 2606-2613.
DOI: 10.1016/j.biomaterials.2009.01.006
Google Scholar
[3]
X. Huang, C.S. Brazel. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 73(2001): 121-136.
DOI: 10.1016/s0168-3659(01)00248-6
Google Scholar
[4]
X. Huang, C.S. Brazel. Analysis of burst release of proxyphylline from poly(vinyl alcohol) hydrogels. Chemical Engineering Communications. 190(2003): 519-532.
DOI: 10.1080/00986440302081
Google Scholar
[5]
J. Zan, H.H. Chen, G.Q. Jiang, et al. Preparation and properties of crosslinked chitosan thermosensitive hydrogel for injectable drug delivery systems. J Appl Polym Sci. 101(2006): 1892-1898.
DOI: 10.1002/app.23613
Google Scholar
[6]
S. Mao, C. Guo, Y. Shi, et al. Recent advances in polymeric microspheres for parenteral drug delivery - part 1. Expert Opinion on Drug Delivery. 9(2012): 1161-1176.
DOI: 10.1517/17425247.2012.709844
Google Scholar
[7]
S. Freiberg, X. Zhu. Polymer microspheres for controlled drug release. International Journal of Pharmaceutics. 282(2004): 1-18.
DOI: 10.1016/j.ijpharm.2004.04.013
Google Scholar
[8]
Z.X. Su, Y.N. Shi, L.S. Teng, et al. Biodegradable poly(D, L-lactide-co-glycolide) (PLGA) microspheres for sustained release of risperidone: Zero-order release formulation. Pharmaceutical Development and Technology. 16(2011): 377-84.
DOI: 10.3109/10837451003739297
Google Scholar
[9]
Y. Tang, Y. Zhao, Y. Li, et al. A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. Polymer Bulletin. 64(2010): 791-804.
DOI: 10.1007/s00289-009-0214-0
Google Scholar
[10]
M. Gou, X. Li, M. Dai, et al. A novel injectable local hydrophobic drug delivery system: Biodegradable nanoparticles in thermo-sensitive hydrogel. International Journal of Pharmaceutics. 359(2008): 228-233.
DOI: 10.1016/j.ijpharm.2008.03.023
Google Scholar
[11]
Y.K. Joung, J.H. Choi, K.M. Park, et al. PLGA microparticle-embedded thermosensitive hydrogels for sustained release of hydrophobic drugs. Biomedical Materials. 2(2007): 269-273.
DOI: 10.1088/1748-6041/2/4/010
Google Scholar
[12]
E. Ruel-Gariepy, G. Leclair, P. Hildgen, et al. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. Journal of Controlled Release. 82(2002): 373-83.
DOI: 10.1016/s0168-3659(02)00146-3
Google Scholar
[13]
Y. Lin, J. Sun, G. Jiang, et al. In vitro evaluation of lysozyme-loaded microspheres in thermosensitive methyleellulose-based hydrogel. Chinese Journal of Chemical Engineering. 15(2007): 566-72.
DOI: 10.1016/s1004-9541(07)60125-6
Google Scholar
[14]
S. Archer. Historical perspective on the chemistry and development of naltrexone. Naltrexone: Research Monograph, National Institute on Drug Abuse. 28(1980): 3-10.
Google Scholar
[15]
S.D. Comer , E.D. Collins, H.D. Kleber, et al. Depot naltrexone: long-lasting antagonism of the effects of heroin in humans. Psychopharmacology. 159(2002): 351.
DOI: 10.1007/s002130100909
Google Scholar
[16]
T.R. Tice, J.K. Staas, T. M. Ferrell. Injectable naltrexone microsphere compositions and their use in reducing consumption of heroin and alcohol. U.S. Patent 6306425 (2001).
Google Scholar
[17]
R.T. Bartus, D.F. Emerich, J. Hotz, et. al. Vivitrex®, an injectable, extended-release formulation of naltrexone, provides pharmacokinetic and pharmacodynamic evidence of efficacy for 1 month in rats. Neuropsychopharmacol. 28(2003): 1973-(1982).
DOI: 10.1038/sj.npp.1300274
Google Scholar
[18]
E.O. Akala, P. Wiriyacoonkasem, G. Pan. Studies on in vitro availability, degradation, and thermal properties of naltrexone-loaded biodegradable microspheres. Drug Development and Industrial Pharmacy. 37(2011): 673-684.
DOI: 10.3109/03639045.2010.535540
Google Scholar
[19]
R. Langer, N.A. Peppas. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49(2003): 2990–3006.
DOI: 10.1002/aic.690491202
Google Scholar
[20]
R. Salehi, N. Arsalani, S. Davaran, et al. Synthesis and characterization of thermosensitive and pH-sensitive poly (N-isopropylacrylamide-acrylamide-vinylpyrrolidone) for use in controlled release of naltrexone. J Biomed Mater Res Part A. 89A (2009).
DOI: 10.1002/jbm.a.32047
Google Scholar
[21]
E. Khodaverdi, F.S.M. Tekie, S.A. Mohajeri, et al. Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, tn Situ forming hydrogel composed of PLGA-PEG-PLGA. AAPS PharmSciTech. 13(2012): 590-600.
DOI: 10.1208/s12249-012-9781-8
Google Scholar
[22]
X.P. Chen, T.P. Guo, Q.D. Guo. A HPLC method for the determination of dissolution of naltrexone hydrochloride tablets. Chinese Pharmaceutical Journal. 36(2001): 619-620.
Google Scholar
[23]
J.A. Stammen, S. Williams, D.N. Ku, et al. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials. 22(2001): 799-806.
DOI: 10.1016/s0142-9612(00)00242-8
Google Scholar
[24]
Y. Cao, G. Mitchell, A. Messina, et al. The influences of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials. 27(2006): 2854-2864.
DOI: 10.1016/j.biomaterials.2005.12.015
Google Scholar
[25]
C. Dubernet. Thermoanalysis of microspheres. Thermochimica. 248(1995): 259-269.
DOI: 10.1016/0040-6031(94)01947-f
Google Scholar
[26]
L. Li, Gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules, 35(2002): 5990-5998.
DOI: 10.1021/ma0201781
Google Scholar
[27]
E. Vey, C. Rodger, J. Booth, et al. Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym Degrad Stabil. 96(2011): 1882-1889.
DOI: 10.1016/j.polymdegradstab.2011.07.011
Google Scholar
[28]
M. Sandor, N.A. Bailey, E. Mathiowitz. Characterization of polyanhydride microsphere degradation by DSC. Polymer. 43(2002): 279-88.
DOI: 10.1016/s0032-3861(01)00612-7
Google Scholar
[29]
C.C. Lin, A.T. Metters. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews. 58(2006): 1379-1408.
DOI: 10.1016/j.addr.2006.09.004
Google Scholar
[30]
C. Gong, S. Shi, L. Wu, et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: Sol-gel-sol transition and drug delivery behavior. Acta Biomater. 5(2009): 3358-3370.
DOI: 10.1016/j.actbio.2009.05.025
Google Scholar
[31]
M.I. Cabrera, R.J.A. Grau. A generalized integral method for solving the design equations of dissolution/diffusion-controlled drug release from planar, cylindrical and spherical matrix devices. J Membr Sci. 293(2007): 1-14.
DOI: 10.1016/j.memsci.2007.01.013
Google Scholar
[32]
C. Bouissou, J.J. Rouse, R. Price, et al. The influence of surfactant on PLGA microsphere glass transition and water sorption: Remodeling the surface morphology to attenuate the burst release. Pharm Res. 23(2006): 1295-305.
DOI: 10.1007/s11095-006-0180-2
Google Scholar