Surface Characteristics of Nanostructure Formed on Sand Blasted with Large Grit and Acid Etched Dental Implant

Article Preview

Abstract:

The purpose of this study was to apply nanotechnology to dental implant for improved osseointegration. Titania nanostructures were fabricated on the sand blasted with large grit and acid etched (SA) titanium (ASTM grade 4) implants (TSIII SA®, Osstem, 3.5 x 5 mm) using potentiostatic anodic oxidation in HF. The nanostructures were uniformly formed on the SA surface. The mean pore size of nanostructure was about 30 nm. In the result of torque test, the nanostructure formed on SA surface was preserved from the torque, even after the loading of 40Ncm. An amorphous titania nanostructure was annealed at 400 °C. Through heat treatment, the amorphous titania nanostructure was turned into anatase phase. Hydrofluoric acid was used as the electrolyte to form nanostructure. In the result of ion release test, however, fluoride ions were not detected at the heat treated group. Therefore, such nanostructured SA implant (Nano-SA) will be suitable for dental implant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-87

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Brunski, D.A. Puleo, A. Nanci: Int. J. Oral Max. Impl. Vol. 15 (2000), p.15.

Google Scholar

[2] A. Nanci, M.D. Mckee, S. Zalzal, S. Sakkal; in: Biological mechanisms of tooth eruption, resorption and replacement by implants, Vol. 87, Boston (1998).

Google Scholar

[3] D.A. Pules, A, Nanci: Biomaterials Vol. 20 (1999), p.2311.

Google Scholar

[4] Z. Schwartz, B.D. Boyan: J. Cell Biochem. Vol. 56 (1994), p.340.

Google Scholar

[5] D.M. Brunette: Exp. Cell Res. Vol. 167 (1986), p.203.

Google Scholar

[6] C.A. Simmons, R.M. Pilliar, in: Bone engineering, EM Spuared Incorporated, Toronto (2000).

Google Scholar

[7] B.D. Boyan, R. Batzer, K. Kieswetter: J. Biomed. Mater. Res. B Appl. Biomater. Vol. 39 (1998), p.77.

Google Scholar

[8] K. Matsuzaka, X.F. Walboomers, M. Yoshinari, T. Inoue, J.A. Jansen: T. Biomaterials Vol. 24 (2003), p.2711.

Google Scholar

[9] M. Wieland, C. Sittig, D.M. Brucette, M. Textor, N.D. Spencer, in: Bone Engineering, edited by J.E. Davies, Toronto, Em Squared (2000), p.163.

Google Scholar

[10] D. Buser, R.K. Schenk, S. Steinemann, J.P. Fiorellini, H. Stich: J. Biomed. Mater. Res. Vol. 25 (1991), p.889.

Google Scholar

[11] D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom, D. Buser: J Biomed. Mater. Res. Vol. 40 (1998), p.1.

Google Scholar

[12] H.J. Wilke, L. Claes, S. Steinmann, in: Advances in Biomaterials, edited by G. Heimke, U. Soltesz, A.J.C. Lee, volume 9 fo Progress in Clinical Implant Materias, Elsevier (1990).

Google Scholar

[13] D. Buser, T. Nydegger, T. Oxland, D.L. Cochran, R.K. Schenk, H.P. Hirt, D. Snetivy, L.P. Nolte: J. Biomed. Mater. Res. Vol. 45 (1999), p.75.

DOI: 10.1002/(sici)1097-4636(199905)45:2<75::aid-jbm1>3.0.co;2-p

Google Scholar

[14] D. Li, S.J. Ferguson, T. Beutler, D.L. Cochran, C. Sittig, H.P. Hirt, D. Buser: J. Biomed. Mater. Res. Vol. 60 (2002), p.325.

Google Scholar

[15] D.W. Gong, C.A. Grimes, O.K. Varghese: J. Mater. Res. Vol. 16 (2001), p.3331.

Google Scholar

[16] H. Masuda, K. Kanezawa, A. Nakao, A. Yokoo, T. Tamamura, T. Sugiura, H. Minoura, K. Nishio: Adv. Mater. Res. Vol. 15 (2003), p.159.

DOI: 10.1002/adma.200390034

Google Scholar

[17] R. Chiesa, E. Sandrini, M. Santin, G. Rondelli, A. Cigada: J. Appl. Biomater. Biomech. Vol. 1 (2003), p.91.

Google Scholar

[18] S.J. ferguson, N. Broggini, M. Wieland, M. de Wild, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran. D. Buser: J. Biomed. Mater. Res. Vol. 78A (2006), p.291.

DOI: 10.1002/jbm.a.30678

Google Scholar

[19] D. Buser, R.K. Schenk, S. Steinemann, J.P. Fiorellini, C.H. Fox, H. Stich: J. Biomed. Mater. Res. Vol. 25 (1991), p.889.

DOI: 10.1002/jbm.820250708

Google Scholar

[20] K. Gotfredsen, L. Nimb, E. Hjorting-Hansen, J.S. Jensen, A. Holmen: Clin. Oral Implants Res. Vol. 6 (1995), p.24.

Google Scholar

[21] Y.T. Sul: Int. J. Nanomedicine Vol. 5 (2010), p.87.

Google Scholar

[22] J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu: Chem. Mater. Vol. 14 (2002), p.1445.

Google Scholar

[23] Z.R. Tian, J.A. Voiget, L.J. B. Mckenzie, H. Xu: J. Am. Chem. Soc. Vol. 125 (2003), p.12384.

Google Scholar

[24] Q. Chen, W. Zhou, G.H. Du, L.M. Peng: Adv. Mater. Res. Vol. 14 (2002), p.1208.

Google Scholar

[25] Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes: J. Mater. Res. Vol. 20 (2005), p.1208.

Google Scholar

[26] A. Curtis, C. Wilkinson: Biochem. Soc. Symp. Vol. 65 (1999), p.15.

Google Scholar

[27] G.B. Schneider, R. Zaharias, C. Stanford: J. Dent. Res. Vol. 80 (2001), p.1540.

Google Scholar

[28] P.J. Brugge, S. Dieudonne, J.A. Jansen: J. Biomed. Mater. Res. Vol. 61 (2002), p.399.

Google Scholar

[29] W. Na, L. Hongyi, L. Wulong, L. Jinghui, W. Jinshu, Z. Zhenting, L. Yiran: Biomaterials Vol. 32 (2011), p.6900.

Google Scholar

[30] Y.T. Sul, C.B. Johansson, Y. Jeong, T. Alverktsson: Med. Eng. Phys. Vol. 23 (2001), p.329.

Google Scholar

[31] Y.T. Sul, C.B. Johansson, S. Retronis: Biomaterials Vol. 23 (2001), p.491.

Google Scholar

[32] M. Bestetti, S. Franz, M. Cuzzolin, P. Arosio, P.L. Cavallotti: Thin Solid Films Vol. 515 (2007), p.5253.

DOI: 10.1016/j.tsf.2006.12.180

Google Scholar

[33] Y.T. Sul, C.B. Johansson, A. Wennerberg: Int. J. Oral Maxillofac. Implants Vol. 20 (2005), p.349.

Google Scholar

[34] Y.T. Sul, C.B. Johansson, Y. Jeong, A. Wennerberg, T. Alvrektsson: Clin. Oral Implants Res. Vol. 13 (2002), p.252.

Google Scholar

[35] W.Q. Yu, Y.L. Zhang, X.Q. Jiang, F.Q. Zhang: Oral Diseases Vol. 16 (2010), p.624.

Google Scholar