Spatial Heterogeneity Induced Antispiral Wave and Spatiotemporal Coherence Resonance

Article Preview

Abstract:

Spiral wave is an important dynamic behavior in several physiological signaling processes, such as the cardiac fibrillation. Since antispiral wave recently been discovered in microemulsion system, it has been intensively studied and discussed. In this work, we find that the spatial noise induced heterogeneity in homogenous system may also induce antispiral formation. Quantitative characterization prove spatiotemporal coherence resonance phenomenon appears, and spatiotemporal noise is more favorable to optimally sustain the antispirals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

843-847

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. K. Vanag and I. R. Epstein, Science 294, 835 (2001).

Google Scholar

[2] M. Ipsen, F. Hynne and P. G. Sorensen, Int. J. Bif. Chaos 7, 1539 (1997).

Google Scholar

[3] A. Rabinovitch, M. Gutman, and I. Aviram, Phys. Rev. Lett. 87, 084101 (2001).

Google Scholar

[4] M. Stich and A. S. Mikhailov, Phys. Chem. 216, 521 (2002).

Google Scholar

[5] V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 88, 088303(2002).

Google Scholar

[6] V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 87, 228301(2001).

Google Scholar

[7] Y. Gong and D. J. Chrstini, Phys. Rev. Lett. 90, 088302(2003).

Google Scholar

[8] Y. Gong and D. J. Chrstini, Physics Letters A 331, 209 (2004).

Google Scholar

[9] H. Skødt and P. G. Sørensen, Phys. Rev. E. 68, 020902(2003).

Google Scholar

[10] L. Brusch, E.M. Nicola and M. Bär, Phys. Rev. Lett. 92, 089810 (2004).

Google Scholar

[11] E. M. Nicola, L. Brusch, and M. Bär, J. Phys. Chem. B, 108, 14733 (2004).

Google Scholar

[12] H. Wang and Q. Ouyang, Chin. Phys. Lett. 21, 1437 (2004).

Google Scholar

[13] Y. Gong and D. J. Chrstini, Bioengineering, Proceedings of the Northeast Conference, 268 (2003).

Google Scholar

[14] S. Alsono, I. S. Nadal, V. P. Muñuzuri, J.M. Sancho, and F. Sagues, Phys. Rev. Lett. 87, 078302 (2001).

Google Scholar

[15] S. Kadar, J. Wang, and K. Showalter, Nature (London) 391, 770 (1998).

Google Scholar

[16] V. P. Muñuzuri, F. Sagues, and J.M. Sancho, Phys. Rev. E 62, 94 (2000).

Google Scholar

[17] J.M.G. Vilar and J.M. Rubi, Phys. Rev. Lett. 78, 2886 (1997).

Google Scholar

[18] J.M.G. Vilar and J.M. Rubi, Physica (Amsterdam) 277A, 327 (2000).

Google Scholar

[19] Y. Braiman, J. F. Linder, and W. L. Ditto, Nature (London) 378, 465 (1995).

Google Scholar

[20] L. Ji, and Q. Li, Phys. Lett. A 329, 309 (2004).

Google Scholar

[21] V. Petrov, Q. Ouyang and H. L. Swinney, Nature (London) 388, 655 (1997).

Google Scholar

[22] Q. Ouyang, Pattern formation in Reaction-Diffusion System, shanghai Scientific and Technological Education Publishing House, SHANGHAI, (2000).

Google Scholar

[23] V. Dufiet, and J. Boissonade, J. Chem. Phys. 96, 664 (1991).

Google Scholar

[24] Z. Hou, and H. Xin, Phys. Rev. Lett., 89, 280601 (2002).

Google Scholar