[1]
Elderly Statistics Press Release, 2009, Blreau of Statistics.
Google Scholar
[2]
D. W. Kang, J. S. Choi, J. W. Lee, S. C. Chung, S. J. Park, and G. R Tack: Real-time elderly activity monitoring system based on a tri-axial accelerometer, Disability and Rehabilitation Assistive Technology, Vol. 5, No 4, pp.247-253, (2010).
DOI: 10.3109/17483101003718112
Google Scholar
[3]
Sophie Turgeon Londei, Jacqueline Rousseau, Francine Ducharme, Alain St-Arnaud, Jean Meunier, Jocelyne Saint-Arnaud and Francine Giroux: An intelligent videomonitoring system for fall detection at home: perceptions of elderly people, Journal of Telemedicine and Telecare, Vol. 15 No. 8, (2009).
DOI: 10.1258/jtt.2009.090107
Google Scholar
[4]
Caroline Rougier, Jean Meunier, Alain St-Arnaud, and Jacqueline Rousseau: Robust Video Surveillance for Fall Detection Based on Human Shape Deformation, IEEE transactions on circuits and systems for video technology, Vol. 21, No. 5, (2011).
DOI: 10.1109/tcsvt.2011.2129370
Google Scholar
[5]
Toreyin, B.U., Y. Dedeoglu, and A.E. Cetin: HMM Based falling Person Detection Using Both Audio and Video, Lecture Notes in Computer Notes in Computer Sciences, (2005), pp.211-221.
DOI: 10.1109/siu.2006.1659753
Google Scholar
[6]
Luo. S, and Q. Hu: A Dynamic Motion Pattern Analysis Approach to Fall Detection, IEEE International Workshop on Biomedical Circuit & Systems, (2004), p. s2. 1_5-S2. 1_8.
DOI: 10.1109/biocas.2004.1454088
Google Scholar
[7]
Q. Li, J.A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach, and G. Zhou: Accurate, Fast, Fall Detection Using Gyroscope and Accelerometer-Derived Posture Information, 2009 Sixth international Workshop on Wearable and Implantable Body Sensor Networks, (2009).
DOI: 10.1109/bsn.2009.46
Google Scholar
[8]
M. Kangas, I Vikman, J. Wiklander, P. Lindgren, L. Nyberg, T. Jamsa: Sensitivity and specificity of fall detection in people aged 40 years and over, Gait & Posture, Vol. 29, (2009), pp.571-574.
DOI: 10.1016/j.gaitpost.2008.12.008
Google Scholar
[9]
M. Kangas , A. Konttila, P. Lindgren, I. Winblad, and T. Jamsa: Comparison of low-complexity fall detection algorithms for body attached accelerometers, Gait & Posture, Vol. 28, (2008), p.285–291.
DOI: 10.1016/j.gaitpost.2008.01.003
Google Scholar
[10]
M. N. Nyan, Francis E. H. TAY, M. Manimaran, K. H. W. Seah: Garment-based detection of falls and activities of daily living using 3-axis MEMS accelerometer, Journal of Physics, Conference Series, Vol 34, (2006), p.1059–1067.
DOI: 10.1088/1742-6596/34/1/175
Google Scholar
[11]
B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew, C.J. Bula, P. Robert: Ambulatory System for Human Motion Analysis Using a Kinematic Sensor Monitoring of Daily Physical Activity in the Elderly, IEEE Trans. on biomedical engineering, Vol. 50, No. 6, (2003).
DOI: 10.1109/tbme.2003.812189
Google Scholar
[12]
B. R. Connell, S. L. Wolf, Environmental and Behavioral Circumstances Associated With Falls at Home Among Healthy Elderly Individuals, Archives of Physical Medicine and Rehabilitation, Vol. 78, pp.179-186, (1977).
DOI: 10.1016/s0003-9993(97)90261-6
Google Scholar