Interspecies H2 Transfer of Syntrophic Microbes in Co-Fermentation with Properties of Biochemical Materials for Hydrogen and Methane Production

Article Preview

Abstract:

Bacteria and archaea that live in syntrophic communities take advantage of the metabolic abilities of their syntrophic partner to overcome energy barriers and break down compounds that they cannot digest by themselves. Interspecies electron transfer is a key process in methanogenic and sulphate-reducing environments. The transfer of hydrogen and formate between bacteria and archaea helps to sustain growth in syntrophic methanogenic communities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-152

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Alfons J. M. Stams, Caroline M. Plugge, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nature. 7 (2009) 568-577.

DOI: 10.1038/nrmicro2166

Google Scholar

[2] Paul G. Falkowski, Tom Fenchel, Edward F. Delong, The microbial engines that drive Earth's biogeochemical cycles, Science. 280 (2008) 1034–1039.

DOI: 10.1126/science.1153213

Google Scholar

[3] Alfons J. M. Stams, Frank A. M. de Bok, Caroline M. Plugge, Exocellular electron transfer in anaerobic microbial communities, Environmental Microbiology. 8 (2006) 371–382.

DOI: 10.1111/j.1462-2920.2006.00989.x

Google Scholar

[4] J. H. Thiele, J. G. Zeikus, Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs, Appl. Environ. Microbiol. 54 (1988) 20–29.

DOI: 10.1128/aem.54.1.20-29.1988

Google Scholar

[5] M. Carepo et al, Hydrogen metabolism in Desulfovibrio desulfuricans strain New Jersey (NCIMB 8313) — comparative study with D. vulgaris and D. gigas species, Anaerobe. 8 (2002) 325–332.

DOI: 10.1016/s1075-9964(03)00007-6

Google Scholar

[6] G. Meshulam-Simon, S. Behrens, A. D. Choo, Hydrogen metabolism in Shewanella oneidensis MR-1, Appl. Environ. Microbiol. 73 (2007) 1153–1165.

DOI: 10.1128/aem.01588-06

Google Scholar

[7] R. G. Sawers, Formate and its role in hydrogen production in Escherichia coli, Biochem. Soc. Trans. 33 (2005) 42–46.

Google Scholar

[8] R. K. Thauer, K. Jungermann, K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41 (1977) 100–180.

DOI: 10.1128/br.41.1.100-180.1977

Google Scholar

[9] R. K. Thauer, A. K. Kaster, H. Seedorf, Methanogenic archaea: ecologically relevant differences in energy conservation, Nature Rev. Microbiol. 6 (2008) 579–591.

DOI: 10.1038/nrmicro1931

Google Scholar

[10] B. Schink, R.K. Thauer, Microbiology and Technology, in: G. Lettinga, A. J. B. Zehnder (Eds. ), Granular Anaerobic Sludge, Pudoc-Publishing Inc., Wageningen, 1988, p.5–17.

Google Scholar

[11] N. Müller, B. M. Griffin, U. Stingl, Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms, Environ. Microbiol. 10 (2008) 1501–1511.

DOI: 10.1111/j.1462-2920.2007.01565.x

Google Scholar

[12] M. P. Bryant, E. A. Wolin, M. J. Wolin, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Mikrobiol. 59 (1967) 20–31.

DOI: 10.1007/bf00406313

Google Scholar

[13] M. J. McInerney et al, The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth, Proc. Natl Acad. Sci. 104 (2007) 7600–7605.

DOI: 10.1073/pnas.0610456104

Google Scholar

[14] T. Kosaka et al, The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota, Genome Res. 18 (2008) 442–448.

DOI: 10.1101/gr.7136508

Google Scholar

[15] A. J. M. Stams et al, Exocellular electron transfer in anaerobic microbial communities, Environ. Microbiol. 8 (2006) 371–382.

Google Scholar

[16] M. Nakanishi-Matsui, M. Futai, Stochastic rotational catalysis of proton pumping F-ATPase, Philos. Trans. R. Soc. Lond. B Biol. Sci. 363 (2008) 2135–2142.

DOI: 10.1098/rstb.2008.2266

Google Scholar

[17] J.C. Scholten et al, Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: involvement of an ancient horizontal gene transfer, Biochem. Biophys. Res. Commun. 352 (2007) 48–54.

DOI: 10.1016/j.bbrc.2006.10.164

Google Scholar

[18] R. Cord-Ruwisch, B. Ollivier, Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes, Arch. Microbiol. 144 (1986) 163–165.

DOI: 10.1007/bf00414728

Google Scholar

[19] D.L. Valentine, D.C. Blanton, W.S. Reeburgh, Hydrogen production by methanogens under lowhydrogen conditions, Arch. Microbiol. 174 (2000) 415–421.

DOI: 10.1007/s002030000224

Google Scholar