Microscopic Filamentous Fungi in Buildings, Preventing their Occurrence and their Remediation Using Nanofibers

Article Preview

Abstract:

The article is focused on prevention and remediation of the occurrence of microscopic filamentous fungi in buildings. The remediation of these fungi can be performed using classical methods (spray, paint, etc.) or use new methods - which include use of nanotechnology, e.g. nanofibers. The nanofibers have specific functional characteristics (e.g. large surface area, etc) according to their production and it can be used for remediation and prevention of occurrence of microscopic filamentous fungi. The effect of nanofibers can be increase by adding nanoparticles or another antimicrobial substance into electrospinning polymer. The article presents the first experimental results with the nanofibers, which could be applied on place with the occurrence of microscopic filamentous fungi, or on place where is expectation their occurrence in future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-92

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Lv, Z. Huang, W. Zhang, P. Rao, L. Ni. Identification and characterization of filamentous fungi isolated from fermentation starters for Hong Qu glutinous rice wine brewing, J.Gen.Appl.Microbiol. 58 (2012) 33-42.

DOI: 10.2323/jgam.58.33

Google Scholar

[2] L. Garcia-Agudo, P. Aznar-Marin, F. Galan-Sanchez, P. Garcia-Martos, P. Marin-Casanova, M. Rodriguez-Iglesias. Otomycosis due to Filamentous Fungi, Mycopathologia. 172 (2011) 307-310.

DOI: 10.1007/s11046-011-9427-5

Google Scholar

[3] J. Paříková, I. Kučerová: How to get rid of molds. Grada publishing, spol. s r.o., Prague, 2001.

Google Scholar

[4] R.C. Shoemaker, D.E. House: Sick building syndrome (SBS) and exposure to water-damaged buildings: Time series study, clinical trial and mechanism. Neurotoxicology and Teratology. 2006, 28, 5, 573-588.

DOI: 10.1016/j.ntt.2006.07.003

Google Scholar

[5] Q. Deng, X. Yang, J.S. Zhang. Key factor analysis of VOC sorption and its impact on indoor concentrations: The role of ventilation, Build.Environ. 47 (2012) 182-187.

DOI: 10.1016/j.buildenv.2011.07.026

Google Scholar

[6] M. Parizek, T.E.L. Douglas, K. Novotna, A. Kromka, M.A. Brady, A. Renzing, et al. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering, Int.J.Nanomed. 7 (2012) 1931-1951.

DOI: 10.2147/ijn.s26665

Google Scholar

[7] M.F. Ashby, P.J. Ferreira, D.L. Schodek, Chapter 11 - Nanomaterials and Nanotechnologies in Health and the Environment, Nanomaterials, Nanotechnologies and Design, Butterworth-Heinemann, Boston, 2009, pp.467-500.

DOI: 10.1016/b978-0-7506-8149-0.00013-1

Google Scholar

[8] L. Geranio, M. Heuberger, B. Nowack. The Behavior of Silver Nanotextiles during Washing, Environ.Sci.Technol. 43 (2009) 8113-8118.

DOI: 10.1021/es9018332

Google Scholar

[9] G. Faggio, V. Modafferi, G. Panzera, D. Alfieri, S. Santangelo. Micro-Raman and photoluminescence analysis of composite vanadium oxide/poly-vinyl acetate fibres synthesised by electro-spinning, J.Raman Spectrosc. 43 (2012) 761-768.

DOI: 10.1002/jrs.3089

Google Scholar

[10] Y. Wang, Q. Zhang, C. Zhang, P. Li. Characterization and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes, Food Chem. 132 (2012) 419-427.

DOI: 10.1016/j.foodchem.2011.11.015

Google Scholar

[11] D. Chmielewska, A. Lukasiewicz, J. Michalik & B. Sartowska (2006). Silica materials with biocidal activity. Nukleonika, 51, S69-S72.

Google Scholar

[12] T. Reponen, J. Lockey, D.I. Bernstein, S.J. Vesper, L. Levin, G.K.K. Hershey, G. LeMasters, (2012). Infant origins of childhood asthma associated with specific molds. Journal of Allergy and Clinical Immunology, 130(3), 639-+.

DOI: 10.1016/j.jaci.2012.05.030

Google Scholar

[13] M. Rai, A. Yadav, A. Gade, Silver Nanoparticles as A New Generation of Antimicrobial, Biotechnology Advances, Vol. 27, No.1, January-February 2009, pp.76-83.

DOI: 10.1016/j.biotechadv.2008.09.002

Google Scholar

[14] M. Catauro, M.G. Raucci, F. de Gaetano and A. Marotta, Antibacterial and Bioactive Silver Containing Na2O·CaO·2SiO2 Glass Prepared by Sol Gel Method, Journal of Materials Science: Materials in Medicine, Vol.15, No.7, July 2004, pp.831-837.

DOI: 10.1023/b:jmsm.0000032825.51052.00

Google Scholar

[15] J.H. Crabtree, R.J. Burchette, R.A. Siddiqi, I.T. Huen, L.L. Handott, A. Fishman, The Efficacy of Silver-Ion Implanted Catheters in Reducing Peritoneal Dialysis-Related Infections, Peritoneal Dialysis International, Vol. 23, No.4, July- August 2003, pp.368-374.)

DOI: 10.1177/089686080302300410

Google Scholar

[16] K. Malachová, P. Praus, Z. Rybková & O. Kozák, (2011). Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Applied Clay Science, 53(4), 642-645.

DOI: 10.1016/j.clay.2011.05.016

Google Scholar