Effects of Carbonization Temperature and Nanoporous Silica Templating on the Synthesis of Porous Carbon from Commercial Sugar

Article Preview

Abstract:

Porous carbons were synthesized from commercial sugar via microporous silica template method in order to control the micropore structure of carbon. The silica template used in this study had a uniform particle size, a specific surface area of 991 m2/g and an average pore size of 2 nm. The effects of carbonization temperature and the content of silica template were investigated. The results showed that the carbonization temperature of 800→C and 50%SiO2/C yielded the maximum methylene blue and iodine adsorption capacity. However, due to microporous nature, a partial dissolution of the silica template with HF solution occurred and blocked the pore entrance, reducing the adsorption capacity and specific surface area of carbon. The specific surface area as high as 1,134 m2/g was, therefore, achieved with porous carbons synthesized without nanoporous silica template.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Karandikar, K.R. Patil, A. Mitra, B. Kakade and A.J. Chandwadkar: Micropor. Mesopor. Mat. Vol. 98 (2007), p.189.

Google Scholar

[2] C. Saka: J. Anal. Appl. Pyrol. Vol. 95 (2012) p.21.

Google Scholar

[3] M. Inagaki: New Carbon Mater. Vol. 24 (2009) p.193.

Google Scholar

[4] J.S. Yu, S.B. Yoon and G.S. Chai: Carbon Vol. 41 (2003) p.1525.

Google Scholar

[5] M.A. Ermakova, D.Y. Ermakov, G.G. Kuvshinov, V.B. Fenelonov and A.N. Salanov: J. Porous. Mat. Vol. 7 (2000) p.435.

DOI: 10.1023/a:1009610424103

Google Scholar

[6] J.E. Hampsey, Q. Hu, Z. Wu, L. Rice, J. Pang and Y. Lu: Carbon Vol. 43 (2005) p.2977.

Google Scholar

[7] V. Loryuenyong, T. Muanghom, T. Apinyanukul and P. Rutthongjan: Adv. Appl. Ceram. Vol. 110 (2011) p.335.

Google Scholar

[8] A.U. Itodo, F.W. Abdulrahman, L.G. Hassan, S.A. Maigandi and H.U. Itodo: New York Sci. J. Vol. 3 (2010) p.25.

Google Scholar

[9] B.H. Hameed, A.T.M. Din and A.L. Ahmad: J. Hazard. Mater. Vol. 141 (2007) p.819.

Google Scholar

[10] S. Han, M. Kim and T. Hyeon: Carbon Vol. 41 (2003) p.1525.

Google Scholar

[11] L. Wei and G. Yushin: J. Power Sources Vol. 196 (2011) p.4072.

Google Scholar

[12] M. Armandi, B. Bonelli, F. Geobaldo and E. Garrone: Micropor. Mesopor. Mat. Vol. 132 (2010) p.414.

Google Scholar

[13] R. Suttanan and K. Piyamongkala: J. KMUTNB Vol. 21 (2011) p.337.

Google Scholar