Characterization of ZnO Thin Films Fabricated by Atomic Layer Deposition with Various Temperatures

Article Preview

Abstract:

Atomic layer deposition (ALD) is utilized to grow high performance zinc oxide (ZnO) thin films, where the effects of ALD process temperature on the thin film properties are also studied in this work. Some major properties of the ALD ZnO films are characterized and compared with those of sputtered ZnO films. Significant differences are observed that the electrical resistances of the ALD ZnO films are largely improved, while the optical transmittances also increase. Nevertheless, the adhesion and mechanical properties of the ALD films are worse than the sputtered films because of the weak bonding in the ALD process. For various substrate temperatures, the ALD ZnO films with 200°C behave the best performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-23

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.M. George, A.W. Ott, J.W. Klaus, J. Phys. Chem. 100 (1996), p.13121.

Google Scholar

[2] T. Suntola, J. Hyvarinen, Annu. Rev. Mater. Sci. 15 (1985), p.177.

Google Scholar

[3] H. Kim, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 2 (2003), p.31.

Google Scholar

[4] J.D. Ferguson, A.W. Weimer, S.M. George, Thin Solid Films 371 (2000), p.95.

Google Scholar

[5] M. Ritala, M. Leskela, J. Dekker, C. Mutsaers, P.J. Soininen, J. Skarp, Chem. Vap. Deposition 5 (1999), p.7.

DOI: 10.1002/(sici)1521-3862(199901)5:1<7::aid-cvde7>3.0.co;2-j

Google Scholar

[6] J.W. Elama, Z.A. Sechrista, S.M. George, Thin Solid Films 414 (2002), p.43.

Google Scholar

[7] D. Kim, H. Kang, J.M. Kim, H. Kim, Applied Surface Science 257 (2011), p.3776.

Google Scholar

[8] K.C. Park, D.Y. Ma and K.H. Kim, Thin Solid Films 305 (1997), p.201.

Google Scholar

[9] R. Cebulla, R. Wendt, and K. Ellmer, J. Appl. Phys. 83 (1998), p.1087.

Google Scholar

[10] S. Kuriki, T. Kawashima, Thin Solid Films 515 (2007), p.8594.

Google Scholar

[11] W. Yang, Z. Liu, D.L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255 (2009), p.5669.

Google Scholar

[12] S.Y. Chang, Y.C. Hsiao, Y.C. Huang, Surf. Coat. Technol. 202 (2008), p.5416.

Google Scholar

[13] D. Zhu, K. Li, F. Luo, W. Zhou, Appl. Surf. Sci. 255 (2009), p.6145.

Google Scholar

[14] C.G. Granqvist and A. Hultaker, Thin Solid Films 411 (2002), p.1.

Google Scholar

[15] Y.H. Tak, K.B. Kim, H.G. Park, K.H. Lee and J.R. Lee, Thin Solid Films 411 (2002), p.12.

Google Scholar

[16] S.H. Jeong, J.W. Lee, S.B. Lee, J.H. Boo, Thin Solid Films 435 (2003), p.78.

Google Scholar

[17] T. Miyata, Y. Honma, T. Minami, J. Vac. Sci. Technol. A 25 (2007), p.1193.

Google Scholar

[18] I.C. Noyan, J.B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York (1987).

Google Scholar

[19] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer, J. Appl. Crystallogr. 38 (2005), p.1.

Google Scholar

[20] T. Pienkos, A. Proszynski, D. Chocyk, L. Gladyszewski, G. Gladyszewski, Microelectronic Engineering 70 (2003), p.42.

DOI: 10.1016/j.mee.2006.10.034

Google Scholar

[21] M. Bai, K. Kato, N. Umehara, Y. Miyake, Thin Solid Films 377-378 (2000), p.138.

Google Scholar

[22] G.G. Stoney, Proc. R. Soc. Lond. A82 (1909), p.172.

Google Scholar

[23] Rhesca CSR-02F, Operating manual, Ver. 3. 05 (2008).

Google Scholar