Analysis of Nanocrystal of Porous Silicon with High-Resolution Transmission Electron Microscopy

Article Preview

Abstract:

The porous silicon samples were prepared with n(111) Si wafers by electrochemical polarization and their microstructures were characterized by high-resolution transmission electron microscopy (HRTEM). The DigitalMicrograph image processing was used to analyze the HRTEM images. The distorted Si (111) crystal plane was observed on porous silicon and could be distinguished with the Fourier transforming electron diffraction (ED) pattern. Grain boundaries were presented in the HRTEM images where the lattice fringes distortions took place. The anisotropy property could be preserved at a small location area because of the smaller nanocrystals in different directions appeared amorphous in the ED pattern at a larger range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-38

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Massera E., I. Nasti, L. Quercia, I. Rea, G. Di. Francia, Sensor. Actuat. B-Chem., 102 (2004) p.195.

Google Scholar

[2] G. Kaltsas, A. A. Nassiopoulos, A. G. Nassiopoulou , Sensor. J., IEEE, 2 (2002), p.463.

Google Scholar

[3] V. M. Aroutiounian, K. Martirosyan, P. Soukiassian, J. Phys. D Appl. Phys., 39 (2006), p.1623.

Google Scholar

[4] Y. Arita, Y. Sunohara, J. Electrochem. Soc., 124 (1977), p.285.

Google Scholar

[5] I. M. Young, M. I. J. Beale, J. D. Benjamin, Appl. Phys. Lett, 46 (1985), p.1133.

Google Scholar

[6] C. S. Solanki, R. R. Bilyalov, J. Poortmans, G. Beaucarne, K. Van Nieuwenhuysen, J. Nijs, R. Mertens. Thin Solid Films, 451-452 (2004), p.649.

DOI: 10.1016/j.tsf.2003.11.157

Google Scholar

[7] T. L. S. L. Wijesinghe, E. J. Teo, D. J. Blackwood, Electrochim. Acta, 53 (2008), p.4381.

Google Scholar

[8] A. G. Cullis, L. T. Canham, Nature, 353 (1991), p.335.

Google Scholar

[9] R. J. Martin-Palma, L. Pascual, P. Herrero, J. M. Martinez-Duart, Appl. Phys. Lett., 81 (2002), p.25.

Google Scholar

[10] J. M. Perez, J. Villalobos, P. McNeill, J. Prasad, R. Cheek, J. Kelber, J. P. Estrera, P. D. Stevens, R. Glosser, Appl. Phys. Lett., 61 (1992), p.563.

DOI: 10.1063/1.107837

Google Scholar

[11] S.Y. Turishchev, V. A. Terekhov, V. M. Kashkarov, E. P. Domashevskaya, S. L. Molodtsov, D. V. Vyalykh, J. Electron. Spectrosco., 2007, 156-158 445-451.

DOI: 10.1016/j.elspec.2006.11.037

Google Scholar

[12] H. O. Yukio, R. Yasuda, T. Tsuboi, A. Otsuki, S. Tetsuo, Commun., 67 (1999), p.1203.

Google Scholar

[13] G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, R. Turan, J. Appl. Phys., 103 (2008), p.113518.

DOI: 10.1063/1.2924417

Google Scholar

[14] A. Gajovic, D. Gracin, I. Djerdj, N. Tomasic, K. Juraic, D. S. Su, Appl. Surf. Sci., 254 (2008), p.2748.

Google Scholar

[15] M. I. Vasilevskiy, A. G. Rolo, M. J. M. Gomes, O. V. Vikhrova, C. Ricolleau, J. Phys-Condens Mat., 13 (2001), p.3491.

Google Scholar

[16] R.J. Martin-Palma, L. Pascual, A. Landa, P. Herrero, J. M. Martinez-Duart, Appl. Phys. Lett. , 85 (2004), p.2517.

Google Scholar