Production of Highly Efficient Photocatalytic TiO2 Powders by Mechanical Ball Milling

Article Preview

Abstract:

Highly efficient photocatalytic TiO2 powders were prepared using a conventional ball mill with various milling times of 0, 12, 24 and 48 h. The photocatalytic activity of the prepared TiO2 powders was evaluated using the decomposition rate obtained by methylene blue (MB) solution and acetic acid gas under UV light irritation. After 24 h milling, the particle size decreased from 555 nm to 122 nm without changing any of the crystal structure. The photocatalytic TiO2 powders prepared by 24 h milling decomposed 94% of the methylene blue solution while the non-milled TiO2 powders provided only 61% decomposition. After the removal of acetic acid gas, it took 1.5 h for the 24h-milled powders to decompose 100%, while the non-milled TiO2 showed 73% decomposition with same UV illumination duration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-48

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, X. Zhang: C. R. Chimie Vol. 9 (2006), p.750.

Google Scholar

[2] U. Diebold: Surf. Sci. Rep Vol. 48 (2003), p.53.

Google Scholar

[3] T. Zhang, T. Oyama, S. Horikoshi, J. Zhao, H. Hidaka: Appl. Catal. B Environ Vol. 42 (2003), p.13.

Google Scholar

[4] N. San, A. Hatipoglu, G. Kocturk, Z. Cinar: J. Photoch. Photobio. A Vol. 146 (2002), p.189.

Google Scholar

[5] A. Fujishima, T.N. Rao, D.A. Tryk: J. Photoch. Photobio. C Vol. 1 (2000), p.1.

Google Scholar

[6] O. Carp, C.L. Huisman, A. Reller: Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem Vol. 32 (2004), p.33.

Google Scholar

[7] G. Zhang, H. Huang, Y. Zhang, H.L.W. Chan, L. Zhou: Electrochem. Commun Vol. 9 (2007), p.2854.

Google Scholar

[8] J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li: J. Phys. Chem. C Vol. 111 (2007), p.693.

Google Scholar

[9] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga: Science Vol. 293 (2001), p.269.

Google Scholar

[10] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai: Appl. Phys. Lett Vol. 81 (2002), p.454.

Google Scholar

[11] Y. Ishibai, J. Sato, S. Akita, T. Nishikawa, S. Miyagishi: J. Photoch. Photobio. A Vol. 188 (2007), p.106.

Google Scholar

[12] B. Xin, Z. Ren, H. Hu, X. Zhang, C. Dong, K. Shi, L. Jing, H. Fu: Appl. Surf. Sci Vol. 252 (2005), p. (2050).

Google Scholar

[13] H. Jiang, L. Gao: Mater. Chem. Phys Vol. 77 (2003), p.878.

Google Scholar

[14] J. Yu, X. Zhao: Mater. Res. Bull Vol. 36 (2001), p.97.

Google Scholar

[15] A.R. Liu, S.M. Wang, Y.R. Zhao, Z. Zheng: Mater. Chem. Phys Vol. 99 (2006), p.131.

Google Scholar

[16] J.H. Jho, D.H. Kim, S-J. Kim, K.S. Lee: J. Alloy. Compd Vol. 459 (2008), p.386.

Google Scholar

[17] S.H. Woo, W.W. Kim, S.J. Kim, C.K. Rhee: Mater. Sci. Eng. A Struct Vol. 449-451 (2007), p.1151.

Google Scholar

[18] H.S. Park, D.H. Kim, S.J. Kim, K.S. Lee: J. Alloy. Compd Vol. 415 (2006), p.51.

Google Scholar

[19] J. Yu, H. Yu, B. Cheng, M. Zhou, X. Zhao: J. Mol. Catal. A: Chem Vol. 253 (2006), p.112.

Google Scholar