Structural and Electronic Properties of ZnO NANOCLUSTERs: A B3LYP DFT Study

Article Preview

Abstract:

An ab initio B3LYP-DFT/6-311G(3df) study has been performed for the stability, structural and electronic properties of forty Znm On (m + n = p = 2 to 4) nanoclusters. We also consider the zero point energy correction. The nanoclusters containing large number of strongly electronegative O atoms for p = 3 and 4 are found to be most stable as compared to the other nanoclusters of the same configuration. The most stable clusters have linear or planer structures and not the three dimensional ones. The observed trend of decrease of the HOMO-LUMO gap with the size of the nanocluster is in conformity with the quantum confined behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-33

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.L. Wang, X.Y. Kong, Y. Ding, P.X. Gao, W.L. Hughes, R.S. Yang and Y. Zhang: AdV. Funct Mater. Vol 14 (2004), pp.943-956.

Google Scholar

[2] Z.L. Wang: Mater. Today (June 2004), pp.26-33.

Google Scholar

[3] H. Kind, H. Yan, M. Law, B. Messer and P. Yang: AdV. Mater. Vol 14 (2002), pp.158-160.

Google Scholar

[4] A. Burnin and J.J. BelBruno: Chem. Phys. Lett. Vol. 362 (2002), 341.

Google Scholar

[5] L.M. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp and K. Dreisewerd: Appl. Phys. A: Mater. Sci. Process Vol. 78 (2004), pp.641-644.

Google Scholar

[6] A. Dmitruk, I. Dmitruk, I. Blonsky, R. Belosludov, Y. Kawazoe and A. Kasuya: Microele. Jour. Vol. 40 (2009), p.218–220.

Google Scholar

[7] I. Ozerov, D. Nelson, A.V. Bulgakov, W. Marine and M. Sentis: Appl. Surf. Sci. Vol. 212 (2003), pp.349-352.

Google Scholar

[8] A. Said, L. Sajti, S. Giorgio and W. Marine: J. Phys.: Conference Series Vol. 59 (2007), pp.259-265.

Google Scholar

[9] S. Acquaviva, E. D'Anna and M.L. De Giorgi: J. Appl. Phys. Vol. 102 (2007), p.073109.

Google Scholar

[10] J. Chen, Z. Feng, P. Ying and C. Li: J. Phys. Chem. B Vol. 108 (2004), pp.12669-12676.

Google Scholar

[11] J. Readman, I. Gameson, J.A. Hriljac, P.E. Edwards and P.A. Anderson: Chem. Commun., (2000), pp.595-596.

Google Scholar

[12] I. Muntele, C. Muntele, P. Thevenard and D. Ila: Surf. Coating Technol. Vol. 201 (2007), pp.8557-8559.

DOI: 10.1016/j.surfcoat.2006.01.086

Google Scholar

[13] S. Wu, N. Yuan, H. Xu, X. Wang and Z.A. Schelly: Nanotechnology Vol. 17 (2006), pp.4713-4718.

Google Scholar

[14] J.M. Matxain, J.M. Mercero, J.E. Fowler and J.M. Ugalde: J. Am. Chem. Soc. Vol. 125 (2003), p.9494.

Google Scholar

[15] A.A.A. Sunaidi, A.A. Sokol, C.R.A. Catlow and S.M. Woodley: J. Phys. Chem. C Vol. 112 (48) 2008, p.18875.

Google Scholar

[16] E.C. Behrman, R.K. Foehrweiser, J.R. Myers, B.R. French and M.E. Zandler: Phys. Rev. A Vol. 49 (1994), pp.1543-1546.

Google Scholar

[17] M.E. Zandler, E.C. Behrman, M.B. Arrasmith, J.R. Myers and T.V. Smith: J. Mol. Struct. Vol. 362 (1996), pp.215-224.

Google Scholar

[18] J.M. Matxain, J.E. Fowler and J.M. Ugalde: Phys. Rev. A Vol. 62 (2000), p.053201.

Google Scholar

[19] A. Jain, V. Kumar and Y. Kawazoe: Comput. Mater. Sci. Vol. 36 (2006), pp.258-262.

Google Scholar

[20] A.C. Reber, S.N. Khanna, J.S. Hunjan and M.R. Beltran: Eur. Phys. J. D, Vol 43 (2007), pp.221-224.

Google Scholar

[21] B. Wang, S. Nagas, J. Zhao and G. Wang: J. Phys. Chem. C Vol. 111(2007), pp.4956-4963.

Google Scholar

[22] B. Wang, X. Wang, G. Chen, S. Nagase and J. Zhao: J. Chem. Phys. Vol. 128 (2008), p.144710.

Google Scholar

[23] P.S. Yadav, D.K. Pandey, S. Agrawal and B.K. Agrawal: J. Nanopart. Res Vol. 12 (2010), pp.737-757.

Google Scholar

[24] Gaussian, Inc. GAUSSIAN 03, Revision C. 03 (Pittsburgh, PA: Gaussian, 2003).

Google Scholar

[25] R.C. Weast, D.R. Lide, M.J. Astle and W.H. Beyer: CRC Handbook of Chemistry and Physics, 70th ed., Chemical Rubber, Boca Raton, (1990).

Google Scholar