Smart Efficient Flame Retardant Carpets in Non Halogen Flame Retardant Polymers

Article Preview

Abstract:

Non halogen flame retardant researches have achieved great progress; however, theoretical works are much lagged. Here we show a model of an efficient Flame Retardant Carpet (e-FRC) based on the synergistic flame retardant system of phosphorus and hydroxyl compounds that can give ABS UL 94 V-0 efficiently. This model is further extended to explain the high efficient flame retardancy of phosphonates by proposing a surfactant structured intermediate from pyrolysis. The smart intermediate self-assembles on charred polymer matrix, forming an anisotropy molecular membrane, with one side of hydrocarbon groups and the other of inorganic groups. The organic side adheres onto polymeric char, and inorganic side facing the fire, forms an Oxygen Shielding Screen (OSS). The OSS together with charred layer underneath constitutes an e-FRC. This e-FRC structure can be found in earlier reports. It can explain all present existing efficient flame retardant systems.

You might also be interested in these eBooks

Info:

[1] Santillo, D. & Johnston, P. Playing with fire: the global threat presented by brominated flame retardants justifies urgent substitution. Environment International 29, 725–734 (2003).

DOI: 10.1016/s0160-4120(03)00115-6

Google Scholar

[2] de Wit, C. A. Herzke, D. Vorkamp, K. Brominated flame retardants in the Arctic environment – trends and new candidates, Science of the Total Environment 408, 2885–2918(2010).

DOI: 10.1016/j.scitotenv.2009.08.037

Google Scholar

[3] Iji, M. & Serizawa, S. Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices. Polym. Adv. Technol. 9, 593–600(1998).

DOI: 10.1002/(sici)1099-1581(1998100)9:10/11<593::aid-pat810>3.0.co;2-u

Google Scholar

[4] Webb, J. L. Novel flame retardant polycarbonate compositions. USP 4, 028, 297; (1977).

Google Scholar

[5] Umeda, T. Nodera, A. Hashimoto, K. Flame retardative polycarbonate resin composition. USP 5, 449, 710; (1995).

Google Scholar

[6] Huang, X. Ouyang, X. Ning, F. Wang, J. Mechanistic study on flame retardance of polycarbonate with a small amount of potassium perfluorobutane sulfonate by TGA-FTIR/XPS. Polymer Degradation and Stability 91, 606-613(2006).

DOI: 10.1016/j.polymdegradstab.2005.02.028

Google Scholar

[7] Horrocks, A. R. Anand, S. C. Sanderson, D. Complex char formation in flame retarded fibre-intumescent combinations: 1. Scanning electron microscopic studies. Polymer 37 (15), 3197-3206(1996).

DOI: 10.1016/0032-3861(96)88462-x

Google Scholar

[8] Hoang, D. Q. Kim, J. Jang, B. N. Synthesis and performance of cyclic phosphorus-containing flame retardants. Polymer Degradation and Stability 93, 2042–2047(2008).

DOI: 10.1016/j.polymdegradstab.2008.02.017

Google Scholar

[9] Babushok, V. & Tsang, W. Inhibitor Rankings for Alkane Combustion. Combustion and Flame 123, 488–506 (2000).

DOI: 10.1016/s0010-2180(00)00168-1

Google Scholar

[10] Brehme, S. et al. Phosphorus polyester versus aluminium phosphinate in poly(butylene- terephthalate) (PBT): Flame retardancy performance and mechanisms. Polymer Degradation and Stability 96, 875-884(2011).

DOI: 10.1016/j.polymdegradstab.2011.01.035

Google Scholar

[11] Wang, G.K. Lin, X.D. Yang, B. Fan, Z.S. Non halogen flame retardant agent containing benzoxazine and their non halogen flame retardant polymer composites. PCT/CN2011/078955.

DOI: 10.4028/www.scientific.net/amr.650.279

Google Scholar

[12] Yang, B. Lin, X.D. Wang, G.K. Liu, D. D. Xue, L.Z. Non halogen flame retardant agent containing novolac phenol resin and their non halogen flame retardant polymer composites. CN patent 201110387792. 9. Nov. (2011).

DOI: 10.1108/prt.2012.12941faa.007

Google Scholar

[13] Hemvichian, K. & Ishida, H. Thermal decomposition processes in aromatic amine-based polybenzoxazines investigated by TGA and GC-MS. Polymer 43, 4391-4402(2002).

DOI: 10.1016/s0032-3861(02)00281-1

Google Scholar

[14] Espinosa, M.A. Galià, M. Cádiz, V. Novel phosphorilated flame retardant thermosets: epoxy–benzoxazine–novolac systems. Polymer 45, 6103–6109 (2004).

DOI: 10.1016/j.polymer.2004.07.002

Google Scholar

[15] Spontόn, M. Lligadas, G. Ronda, J. C. Galià, M. Cádiz, V. Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines. Polymer Degradation and Stability 94, 1693–1699(2009).

DOI: 10.1016/j.polymdegradstab.2009.06.020

Google Scholar

[16] Price, D. et al. Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polymer Degradation and Stability 92, 1101-1114(2007).

DOI: 10.1016/j.polymdegradstab.2007.02.003

Google Scholar

[17] Hatsuhiko, H. Yoshihisa, T. Takahito, I. Synergistic effect of red phosphorus,novolac and melamine ternary combination on flame retardant flame retardancy of poly(oxymethylene). Polymer Degradation and Stability 91, 1996-2002(2006).

DOI: 10.1016/j.polymdegradstab.2006.02.010

Google Scholar

[18] Dumitrascu, A. & Howell, B. A. Flame-retarding vinyl polymers using phosphorus- functionalized styrene monomers. Polymer Degradation and Stability 96, 342-349(2011).

DOI: 10.1016/j.polymdegradstab.2010.02.023

Google Scholar