Fabrication of Nano-Particle Reinforced Metal Matrix Composites

Article Preview

Abstract:

Nanoparticle reinforced metal matrix possess much better mechanical properties over microparticle reinforced metal matrix composites as well as corresponding monolithic matrix materials. However, the fabrication methods of nanoparticle reinforced metal matrix composites are complex and expensive. This paper investigates and discusses the mechanisms of all the fabrication process, such as powder metallurgy, liquid metallurgy, compocasting and hybrid methods, available in the literature. This gives an insight on challenges associated with different processes and ways to improve the fabrication processes. It is found that modified traditional fabrication processes are mainly applied for these materials. The main problem is to achieve reasonably uniform distribution of nanoparticle reinforcement in the methods other than mechanical alloying when the volume or weight percent of reinforcement is higher (> 1%).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-294

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Pramanik, L. C. Zhang, et al., Int. J of Mach. Tools and Manuf. 48 (2008)1613–1625.

Google Scholar

[2] A. Pramanik, L. C. Zhang, et al., Int. J of Mach. Tools and Manuf., 46 (2006)1795–1803.

Google Scholar

[3] D. B. Miracle, Compos. Sci. Technol. 2005, 65, 2526.

Google Scholar

[4] Z. Y. Ma, Y. L. Li, Y. Liang, F. Zheng, J. Bi, S. C. Tjong, Mater. Sci. Eng. A 1996, 219, 229.

Google Scholar

[5] D. C. Jia, Mater. Sci. Eng. A 2000, 289, 83.

Google Scholar

[6] F. Ferkel, B. L. Mordike, Mater. Sci. Eng. A 2001, 298, 193.

Google Scholar

[7] D.E. Alman, in ASM Handbook, Vol. 21, ASM International, Materials Park, (2001).

Google Scholar

[8] L. Lu, M. O. Lai, W. Liang, Compos. Sci. Technol. 2004, 64, (2009).

Google Scholar

[9] S. F. Hassan, M. Gupta, Mater. Sci. Eng. A 2005, 392, 163.

Google Scholar

[10] S. C. Tjong, Z. Y. Ma, Mater. Sci. Eng. R 2000, 29, 49.

Google Scholar

[11] R. Z. Valiev, Mater. Sci. Eng. A 1997, 234, 59.

Google Scholar

[12] V. V. Stilyarov, Y. T. Zhu, T. C. Lowe, et al., Mater. Sci. Eng. A 2000, 282, 78.

Google Scholar

[13] Y.C. Kang, S.L. Chan, Materials Chemistry and Physics, Vol. 85, (2004), p.438.

Google Scholar

[14] X. Li, Y. Yang, D. Wesis, , AFS transactions, American foundry society, Schaumburg, IL, USA Paper 07-133(02) (2007).

Google Scholar

[15] Xiaochun Li, Yong Yang, David Weiss, , Metall. Scie. and Tech., 26(2) (2008)12-20.

Google Scholar

[16] S.C. Tjong, Advanced Engineering Materials, 9(8) (2007) 639-652.

Google Scholar

[17] T. Mousavi, F. Karimzadeh, M.H. Abbasi, J of Alloys and Comp. 467 (1–2) (2009) 173–178.

Google Scholar

[18] S.M. Zebarjad, S.A. Sajjadi, Materials and Design 28 (7) (2007) 2113–2120.

Google Scholar

[19] M. Zakeri, M.R. Rahimipour, et al., J of Alloys and Comp. 492 (1–2) (2010) 226–230.

Google Scholar

[20] F. Tang, M. Hagiwara, J. M. Schoenung, Mater. Sci. Eng. A (407)(2005) 306.

Google Scholar

[21] F. Tang, M. Hagiwara, J. M. Schoenung, Scr. Mater. 53(2005) 619.

Google Scholar

[22] C. Suryanarayana, Prog. Mater. Sci. (46)(2001) 1.

Google Scholar

[23] H. Mahboob, S. A. Sajjadi, S. M. Zebarjad, Powder Metallurgy 54 (2)(2011) 148-152.

Google Scholar

[24] S.A. Sajjadi, M. Torabi Parizi, et al., J of Alloys and Comp. 511 (2012) 226– 231.

Google Scholar

[25] Y. Yang, X. Li, Journal of Manufacturing Science and Engineering, Vol. 129, (2007). 497-501.

Google Scholar

[26] Y. Yang, J. Lan, X. Li, Materials Science and Engineering A 380 (2004) 378–383.

Google Scholar

[27] K. Akio, O. Atsushi, K. Toshiro, T. Hiroyuki, J. Jpn. Inst. Light Met. 49 (1999) 149–154.

Google Scholar

[28] K.M. Mussert, W.P. Vellinga, A. Bakker, S. Van Der Zwaag, J. Mater. Sci. 37 (2002) 789–794.

DOI: 10.1023/a:1013896032331

Google Scholar

[29] S. Suslick, Y. Didenko, M.M. Fang, et al., Phil. Tans. R. Soc. Lond., vol. A357, (1999), 335.

Google Scholar

[30] R. Banerjee, A. Genc, D. Hill, P. C. Collins, H. L. Fraser, Scr. Mater. 2005, 53, 1433.

Google Scholar

[31] Y. Yang, J. Lan, X. Li, Mater. Sci. Eng. A 2004, 380, 378.

Google Scholar

[32] Z. Wang, X. Wang, Y. Zhao, W. Du, Trans. Nonferrous Met. Soc. China 20(2010) 1029-1032.

Google Scholar

[33] K. F. Ho, M. Gupta, J. Metastable Nanocryst. Mater. (23)(2005) 159.

Google Scholar

[34] A. Mazahery, H. Abdizadeh, H.R. Baharvandi, Mater. Sci. Eng., A 518(2009) 61–64.

Google Scholar

[35] M. Habibnejad-Korayem, R. Mahmudi, et al., Mater. Sci. Eng., A519 (2009) 198–203.

Google Scholar

[36] A. Dehghan Hamedan, M. Shahmiri, Mater. Sci. & Eng., A 556 (2012) 921–926.

Google Scholar

[37] Wu X Q, Zhan Q, Yang Y S, et al. , J Mater Sci Lett, (17) (1998) 1403-1405.

Google Scholar

[38] Z. M. Ren, J. Z. Jin, Light Metals, (1992)1263-1267.

Google Scholar

[39] Hao Yu, Processing routes for aluminum based nano-composites, Master Degree Thesis submitted to the Faculty of the Worcester Polytechnic Institute, April (2010).

Google Scholar

[40] H. Sevik, S. Can Kurnaz, J. Mater. Des. 27 (2006) 676–683.

Google Scholar

[41] G.R. Li, Y.T. Zhao, H.M. Wang, G. Chen, et al., J. Alloys Compd. 471 (2009) 530–535.

Google Scholar

[42] S. Amirkhanlou, M.R. Rezaei, B. Niroumand, et al., J. Mater. Des. 32 (2011) 2085–(2090).

Google Scholar

[43] J.T. Lin, D. Bhattacharyya, C. Lane, Wear 883 (1995) 181–183.

Google Scholar

[44] S. Naher, D. Brabazon, L. Looney, J. Mater. Process. Technol. 143–144 (2003) 567–571.

Google Scholar

[45] Z. Wang, et al., 9th Int. Conf. on Semi-Solid Proce. of Alloys and Compo., Busan; (2006).

Google Scholar

[46] R. A. Vain, Metall. Mater. Trans. A 2002, 33, 193.

Google Scholar

[47] C. J. Hu, C. Y. Chang, P. W. Kao, N. J. Ho, C. P. Chang, Acta Mater. 2006, 54, 5241.

Google Scholar

[48] K.B. Nie, X.J. Wang, K. Wu, L. Xu, et al., J of Alloys and Compounds 509 (2011) 8664– 8669.

Google Scholar