Large Area Uniform Microstructures on Silicon Surface Created with a Picosecond Laser Beam Scanning

Article Preview

Abstract:

We present the experimental results of picosecond pulse laser microstructuring of silicon in the SF6 atmosphere using the galvanometer scanning technique. With appropriate irradiation conditions, a large variety of surface microstructures even nanostructures were produced. By rapidly scanning, a uniform array of micro-crater structure with 10nm in depth is generated on the crystal silicon surface. At low scanning speed, large area uniform self-organizing micro-grating, micro-hole, or micro-cone structure can be produced by cumulative pulses irradiation. These results suggest that picosecond laser scanning technique is a flexible method to produce uniform surface micro-nanostructures, which exhibits great potential for applications in photoelectron devices, special surface marking and surface modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-332

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tsing-Hua Her, Richard J. Finlay, Claudia Wu, Shrenik Deliwala and Eric Mazur: Appl. Phys. Lett. Vol. 73(1998), pp.1673-1675.

DOI: 10.1063/1.122241

Google Scholar

[2] M. A. Sheehy, L. Winston, J. E. Carey, C. A. Friend, and E. Mazur: Chemistry of Materials, Vol. 17 (2005), pp.3582-3586.

Google Scholar

[3] Wu C., Crouch C. H., Zhao L., Carey J.E., Younkin R., Levinson J.A., Mazur E., Farrell R.M., Gothoskar P., Karger A: Appl. Phys. Lett. Vol. 78 (2001), pp.1850-1852.

DOI: 10.1063/1.1358846

Google Scholar

[4] T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur: Langmuir Vol. 22 (2006), pp.4917-4919.

Google Scholar

[5] E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur: Langmuir Vol. 25(2009), pp.1790-1794.

Google Scholar

[6] R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend: J. Appl. Phys. Vol. 93(2003), pp.2626-2629.

Google Scholar

[7] C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin: Appl. Phys. A: Mater. Sci. & Processing Vol. 79 (2004), pp.1635-164.

Google Scholar

[8] Zhao Ming, Yin Gang, Zhu Jing-Tao, Zhao Li: Chin. Phys. Lett. Vol. 20 (2003), pp.1789-1791.

Google Scholar

[9] H. M. Vandriel, J. E. Sipe, and J. F. Young: Phys. Rev. Lett. Vol. 49(1982), p.1955-(1958).

Google Scholar

[10] P. M. Fauchet and A. E. Siegman: Appl. Phys. Lett. Vol. 40(1982), pp.824-826.

Google Scholar

[11] J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes: Appl. Phys. Lett. Vol. 77(2000), pp.1629-1631.

Google Scholar

[12] D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza: Appl. Surf. Sci. Vol. 154-155 (2000), pp.647-658.

Google Scholar

[13] M. Shen, C. H. Crouch, J. E. Carey, R. J. Younkin,E. Mazur, M. A. Sheehy and C. M. Friend: Appl. Phys. Lett., 82(2003), pp.1715-1717.

DOI: 10.1063/1.1561162

Google Scholar

[14] Dewei Liu, Yongguang Huang, Xiaoning Zhu, Xiyuan Wang, Haijuan Yu, Xuechun Lin, Minghua Chen, Hongliang Zhu: Adv. Mater. Res. Vol. 418-420(2011), pp.77-81.

Google Scholar