[1]
S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Machine Intell. 11 (1989) 674-693.
DOI: 10.1109/34.192463
Google Scholar
[2]
J. Ko, A. J. Kurdila, M. S. Pilant, A class of finite element methods based on orthonormal, compactly supported wavelets, Comput. Mech 16 (1995) 235-244.
DOI: 10.1007/bf00369868
Google Scholar
[3]
Lilliam Alvarez Díaza, MaríaT. Martín, VictoriaVampa, Daubechies wavelet beam and plate finite elements, Finite Elem. Anal. Design 45 (2009) 200-209.
DOI: 10.1016/j.finel.2008.09.006
Google Scholar
[4]
Gradimir V. Milovanović, Zlatko Udovičić, Calculation of coefficients of a cardinal B-spline, Appl. Math. Lett. 23 (2010) 1346-1350.
DOI: 10.1016/j.aml.2010.06.029
Google Scholar
[5]
W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal. 29 (1998) 511-546.
DOI: 10.1137/s0036141095289051
Google Scholar
[6]
W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3 (1996) 186-200.
DOI: 10.1006/acha.1996.0015
Google Scholar
[7]
V. Vasilyev, N. K. Kevlahan, An adaptive multilevel wavelet collocation method for elliptic problems, J. Comput. Phys. 206 (2005) 412-431.
DOI: 10.1016/j.jcp.2004.12.013
Google Scholar
[8]
S. D'Heedene, K. Amaratunga, J. Castrillón-Candás, Generalized hierarchical bases: a Wavelet-Ritz-Galerkin framework for Lagrangian FEM, Engineering Computations: Internation Journal for Computer-Aided Engineering and Software 22 (2005) 15-37.
DOI: 10.1108/02644400510572398
Google Scholar
[9]
K. Amaratunga, R. Sudarshan, Multiresolution modeling with operator-customized wavelets derived from finite elements, Comput. Methods Appl. Mech. Engrg, 195 (2006) 2509–2532.
DOI: 10.1016/j.cma.2005.05.012
Google Scholar