An Application of Multiresolution Analysis and Lifting Scheme in FEM

Article Preview

Abstract:

Based on multiresolution analysis and lifting scheme, and an adaptive finite element method(FEM) is developed. The coarse solution can be obtained in the approximation element. The coarse solution can be refined via adding details hierarchically and locally, then sharp transitions may be captured. The numerical example has verified the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

631-634

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Machine Intell. 11 (1989) 674-693.

DOI: 10.1109/34.192463

Google Scholar

[2] J. Ko, A. J. Kurdila, M. S. Pilant, A class of finite element methods based on orthonormal, compactly supported wavelets, Comput. Mech 16 (1995) 235-244.

DOI: 10.1007/bf00369868

Google Scholar

[3] Lilliam Alvarez Díaza, MaríaT. Martín, VictoriaVampa, Daubechies wavelet beam and plate finite elements, Finite Elem. Anal. Design 45 (2009) 200-209.

DOI: 10.1016/j.finel.2008.09.006

Google Scholar

[4] Gradimir V. Milovanović, Zlatko Udovičić, Calculation of coefficients of a cardinal B-spline, Appl. Math. Lett. 23 (2010) 1346-1350.

DOI: 10.1016/j.aml.2010.06.029

Google Scholar

[5] W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal. 29 (1998) 511-546.

DOI: 10.1137/s0036141095289051

Google Scholar

[6] W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3 (1996) 186-200.

DOI: 10.1006/acha.1996.0015

Google Scholar

[7] V. Vasilyev, N. K. Kevlahan, An adaptive multilevel wavelet collocation method for elliptic problems, J. Comput. Phys. 206 (2005) 412-431.

DOI: 10.1016/j.jcp.2004.12.013

Google Scholar

[8] S. D'Heedene, K. Amaratunga, J. Castrillón-Candás, Generalized hierarchical bases: a Wavelet-Ritz-Galerkin framework for Lagrangian FEM, Engineering Computations: Internation Journal for Computer-Aided Engineering and Software 22 (2005) 15-37.

DOI: 10.1108/02644400510572398

Google Scholar

[9] K. Amaratunga, R. Sudarshan, Multiresolution modeling with operator-customized wavelets derived from finite elements, Comput. Methods Appl. Mech. Engrg, 195 (2006) 2509–2532.

DOI: 10.1016/j.cma.2005.05.012

Google Scholar