A Decorrelation-Based Nonnegative Matrix Factorization Algorithm for Face Recognition

Article Preview

Abstract:

Nonnegative Matrix Factorization (NMF) is among the most popular subspace methods, widely used in a variety of image processing problems. However, this approach is very time-consuming in face recognition due to the extreme high dimensionality of the original matrix. To remedy this limitation, this paper presents a Decorrelation-based NMF (DNMF) method. The proposed algorithm first takes into account the dimension reduction of the original matrix by preprocessing of decorrelation in spatial domain, and then uses nearest neighbor classifier on the reduced subspace. The developed algorithm has been applied for the ORL standard face image database. Experimental results demonstrate the validity of this method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

858-863

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Turk, A. Pentland, Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3 (1991) 71-86.

Google Scholar

[2] D. Masip, A. Lapedriza, J. Vitria, Boosted Online Learning for Face Recognition. IEEE Trans. Syst, Man, Cybern. B, Cybern, 39 (2009) 530-538.

DOI: 10.1109/tsmcb.2008.2007497

Google Scholar

[3] D. D. Lee, H. S. Seung, Learning the Parts of Objects by Non-negative Matrix Factorization. Nature, 401 (1999) 788-791.

DOI: 10.1038/44565

Google Scholar

[4] D. Guillamet, J. Vitria, Nonnegative Matrix Factorization for Face Recognition. Lecture Notes in Computer Science, 2504 (2002) 336-344.

DOI: 10.1007/3-540-36079-4_29

Google Scholar

[5] R. Ramanath, W. E. Snyder, H. Qi, Eigenviews for Object Recognition in Multispectral Imaging Systems. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop (AIPR'03), 2003. pp.33-38.

DOI: 10.1109/aipr.2003.1284245

Google Scholar

[6] A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmean, R. D. Pascual-Marqui, Nonsmooth Nonnegative Matrix Factorization (nsNMF). IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006) 403-415.

DOI: 10.1109/tpami.2006.60

Google Scholar

[7] C. H. Zheng, D. S. Huang, L. Zhang, X. Z. Kong, Tumor Clustering Using Nonnegative Matrix Factorization with Gene Selection. IEEE Transactions on Information Technology in Biomedicine, 13 (2009) 599-607.

DOI: 10.1109/titb.2009.2018115

Google Scholar

[8] G. Buchsbaum, O. Bloch, Color Categories Revealed by Nonnegative Matrix Factorization of Munsell Color Spectra. Vision Research, 42 (2002) 559-563.

DOI: 10.1016/s0042-6989(01)00303-0

Google Scholar

[9] P. Smarragdis, J. C. Brown, Nonnegative Matrix Factorization for Polyphonic Music Transcription. Proceedings of the IEEE workshop Applications of Signal Processing to Audio and Acoustics, 2003. pp.177-180.

DOI: 10.1109/aspaa.2003.1285860

Google Scholar

[10] R. Zdunek, A. Cichocki, Nonnegative Matrix Factorization with Constrained Second-order Optimization. Signal Processing, 87 (2007) 1904-(1916).

DOI: 10.1016/j.sigpro.2007.01.024

Google Scholar

[11] H. Yin, H. Liu, Nonnegative Matrix Factorization with Bounded Total Variational Regularization for Face Recognition. Pattern Recognition Letters, 31 (2010) 2468-2473.

DOI: 10.1016/j.patrec.2010.08.001

Google Scholar

[12] J. Y. Pan, J. S. Zhang, Large Margin Based Nonnegative Matrix Factorization and Partial Least Squares Regression for Face Recognition. Pattern Recognition Letters, 32 (2011) 1822-1835.

DOI: 10.1016/j.patrec.2011.07.015

Google Scholar

[13] S. Nikitidis, A. Tefas, N. Nikolaidis, I. Pitas, Subclass Discriminant Nonnegative Matrix Factorization for Facial Image Analysis. Pattern Recognition, 45 (2012) 4080-4091.

DOI: 10.1016/j.patcog.2012.04.030

Google Scholar

[14] I. Buciu, N. Nikolaidis, I. Pitas, Nonnegative matrix factorization in polynomial feature space, IEEE Transactions on Neural Networks, 19 (2008) 1090-1100.

DOI: 10.1109/tnn.2008.2000162

Google Scholar

[15] S. Zafeiriou, M. Petrou, Nonlinear nonnegative component analysis algorithms, IEEE Transactions on Image Processing, 19 (2010) 1050-1066.

DOI: 10.1109/tip.2009.2038816

Google Scholar