Matrix Structure and Cryptographic Properties of Rotation Symmetric H Boolean Functions

Article Preview

Abstract:

Use the derivative of the Boolean function and the e-derivative defined by ourselves as research tools, Cryptographic properties such as structural features, and the balance, correlation immunity of diffused rotation symmetric H Boolean functions is studied. Then we get the results of the relationship of a matrix structure, correlation immunity, dimension and balance of rotationally symmetric H Boolean functions, etc. As well as the result of algebraic immunity and the algebraic immunity orders that related with the Third Order completely pure rotation symmetric Boolean functions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

955-960

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J Pieprzyk, C Qu. Fast hashing and rotation-symmetric functions,. Journal of Universal Computer Science, Vol. 5(1): 20-31(1999).

Google Scholar

[2] W Cusick, P Stanica, S Maitra. Fast evaluation, weight and nonlinearity of rotation symmetric functions,. Discrete mathematics, Vol. 258(1-3): 289-301(2002).

DOI: 10.1016/s0012-365x(02)00354-0

Google Scholar

[3] P Stanica, S Maitra. Rotation symmetric Boolean functions-count and cryptographic properties,. Discrete Applied Mathematics, Vol. 156: 1567-1580(2008).

DOI: 10.1016/j.dam.2007.04.029

Google Scholar

[4] P Stanica, S Maitra. Construction of rotation symmetric Boolean functions with optimal algebraic immunity,. Computer Systems, Vol. 12(3): 267-284(2009).

Google Scholar

[5] S. Sarkar, S. Maitra. Construction of Rotation Symmetric Boolean functions with Maximum Algebraic Immunity on odd Number of Variables,. In: Boztas,S., Lu, H-F. (eds. )AAECC 2007. LNCS, vol. 4851: 271-280. Heidelberg : Springer, (2007).

DOI: 10.1007/978-3-540-77224-8_32

Google Scholar

[6] S Fu, L Qu, C Li, et al. Balanced rotation symmetric Boolean functions with maximum algebraic immunity,. Information Security, IET, Vol. 5(2): 93-99(2011).

DOI: 10.1049/iet-ifs.2010.0048

Google Scholar

[7] P Stanica, S Maitra, J Clark. Results on rotation symmetric bent and correlation immune Boolean functions,. Fast software encryption workshop (FSE 2004), New Delhi, India, LNCS3017. Springer Verlag, 2004, 161-177.

DOI: 10.1007/978-3-540-25937-4_11

Google Scholar

[8] A Maximov, M Hell, S Maitra. Plateaued rotation symmetric Boolean functions on odd number of variables,. Proceedings of The First Workshop on Boolean Functions : Cryptography and Applications. Rouen, France(2005).

Google Scholar

[9] E Elsheh. On the linear structures of cryptographic rotation symmetric Boolean functions". Proceedings of The 9th International Conference for Young Computer Scientists(ICYCS , 08). Hunan, China(2008).

DOI: 10.1109/icycs.2008.479

Google Scholar

[10] S.J. Fu, C. Li, K. Matsuura, L.J. Qu. Construction of rotation symmetric Boolean functions with maximum algebraic immunity,. CANS 2009, LNCS, Springer-Verlag, vol. 5888: 402-419(2009).

DOI: 10.1007/978-3-642-10433-6_27

Google Scholar

[11] W. Li, Z. Wang, J. Huang. The e-derivative of boolean functions and its application in the fault detection and cryptographic system,. Kybernetes, Vol. 40(5-6): 905-911(2011).

DOI: 10.1108/03684921111142458

Google Scholar

[12] J. Huang, Z. Wang. The relationship between correlation immune and weight of H Boolean functions,. Journal on Communications, Vol. 33(2): 110-118(2012). (In Chinese).

Google Scholar