Treatment of Cationic Dye Wastewater with Hybrid Sorbent Generated by Anionic Dye Wastewater Hybridization with Calcium Fluoride

Article Preview

Abstract:

CaF2/AG25 (CFA) hybrid sorbent formed by hybrid reaction with activated calcium fluoride of low cost and anionic dye wastewater-Acid Green 25 (AG25) was used for the treatment of cationic dye wastewater. The adsorption of two cationic dyes methyl violet (MV) and Neutral Red (NR) from aqueous solutions was examined using a batch sorption technique. The effects of time, pH, ionic strength and temperature on the adsorption were also examined. It exhibited a faster adsorption to cationic dyes and hardly affected in pH over 3.5, ionic strength low 0.04 mol/L and temperature between 20 oC and 60 oC. The adsorption behavior of the NR and MV on CFA is in good agreement with the Langmiur isotherms model with the correlation coefficients of R 0.9948 for NR and 0.9992 for MV and the maximum adsorption capacity of NR (39.22 mg/g) and MV (48.78 mg/g). Finally, this sorbent was used in treatment of two practical cationic dye wastewaters with satisfactory results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

1571-1579

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Technical Papers: Application of dye wastewater treatment. http://chemical.ezinemark.com/ technical-papers-application-of-dye-wastewater-treatment-16896048261.html

Google Scholar

[2] X.P. Zhu, J.R. Ni, J.J. Wei, X.A. Xing and H.G. Li. J. Hazard. Mate. Vol. 189 (2011), pp.127-133.

Google Scholar

[3] S. Papić, N. Koprivanac, A.L. Božić and A. Meteš. Dyes Pigm. Vol. 62 (2004), pp.291-298.

Google Scholar

[4] G. Moussavi, and R. Khosravi.Chem. Eng. Res. Des. Vol. 89(2011), pp.2182-2189.

Google Scholar

[5] K.S. Thangamani, M. Sathishkumar, Y. Sameena, N. Vennilamani, K. Kadirvelu, O. Turgaya, G. Ersoza, S. Atalaya, J. Forssb, and U. Welanderb. Sep. Purif. Technol. Vol. 79(2011), pp.26-33.

Google Scholar

[6] A.R. Gregory, S. Elliot and P. Kluge. J. Appl. Toxicol. Vol. 1(1991), pp.308-313.

Google Scholar

[7] M. Işık, and D.T. Sponza. Enzyme Microb. Tech. Vol. 38 (2006), pp.887-892.

Google Scholar

[8] A.K. Verma, R.R. Dash and P. Bhunia. J. Enviro. Manage. Vol. 93 (2012), pp.154-168.

Google Scholar

[9] W. Zhao, Z. Wu and D. Wang. J. Hazard. Mater. Vol. 137 (2006), pp.1859-1865.

Google Scholar

[10] F.Y. Yu, C.W. Li and S-F. Kang. Environ. Technol. Vol. 26(2005), pp.537-544.

Google Scholar

[11] A. Spagni, S. Casu, and S. Grilli. Bioresource Technol. Vol. 117 (2012), pp.180-185.

Google Scholar

[12] M. Wawrzkiewicz and Z. Hubicki. Environ. Technol. Vol. 30(2009), pp.1059-1071.

Google Scholar

[13] M. Muruganandham and M. Swaminathan. J. Hazard. Mater. Vol. 135(2006), pp.78-86.

Google Scholar

[14] S. Chatterjee, T. Chatterjee, S.R. Lim and S.H. Woo. Environ. Technol. Vol. 32(2011), pp.1503-1514.

Google Scholar

[15] S. Çoruh, F. Geyikçi and O. N. Ergun. Environ. Technol. Vol. 32(2011), pp.1183-1193.

Google Scholar

[16] R.D. Ambashta, and M. Sillanpää. J. Hazard. Mater. Vol. 180 (2010), pp.38-49.

Google Scholar

[17] S. Mintova, V.D. Waele, U. Schmidhammer, E. Riedle, and T. Bein. Angew. Chem. Int. Ed. Vol. 42(2003), pp.1611-1614.

DOI: 10.1002/anie.200219900

Google Scholar

[18] Q.F. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, and G.Z. Cao. Angew. Chem. Int. Ed. Vol. 47(2008), pp.2402-2406.

Google Scholar

[19] J.H. Zhu, S.H. Yu, A.W. Xu, and H. Cölfen. Chem. Commun. Vol. 1106(2009), p.1108.

Google Scholar

[20] J. Zhong and M.M. Maye. Adv. Mater. Vol. 13(2001), pp.1507-1511.

Google Scholar

[21] A.C. Templeton, W.P. Wuelfing and R.W. Murray. Acc. Chem. Res. Vol. 33(2000), pp.27-36.

Google Scholar

[22] M. Steinhart, J.H. Wendorff, A. Greiner, R.B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, and U. Gösele. Science Vol. 296(2002), p.1997.

DOI: 10.1126/science.1071210

Google Scholar

[23] H.P. Cong and S.H. Yu. Adv. Funct. Mate. Vol. 17 (2007), pp.1814-1820.

Google Scholar

[24] M.X. Wan. Adv. Mater. Vol. 20(2008), pp.2926-2932.

Google Scholar

[25] H. Nobukuni, Y. Shimazaki, F. Tani and Y. Naruta. Angew. Chem. Int. Ed. Vol. 46(2007), pp.8975-8978.

DOI: 10.1002/anie.200704058

Google Scholar

[26] S.A. Haque, E.Palomares, H.M. Upadhyaya, L. Otley, R.J. Potter, A.B. Holmes and J.R. Durrant. Chem. Commun. Vol. 24(2003), pp.3008-3009.

DOI: 10.1039/b308529e

Google Scholar

[27] E. Palomares, R. Vilar and J.R. Durrant. Chem. Commun. Vol. 4(2004), pp.362-363.

Google Scholar

[28] H.J. Ding, J.Y. Shen, M.X. Wan and Z.J. Chen. Macromol. Chem. Phys. Vol. 209(2008), pp.864-871.

Google Scholar

[29] Y. Takahashi, H. Kasai, H. Nakanishi and T.M. Suzuki. Angew. Chem. Int. Ed. Vol. 45 (2006), pp.913-916.

Google Scholar

[30] C.C. Ribeiro, C. C. Barrias and M. A. Barbosa. Biomaterials, Vol. 25(2004), pp.4363-4373.

Google Scholar

[31] A.K. Pandey, S. D. Pandey, V. Misra and S. Devib. J. Hazard. Mater. Vol. 98(2003), pp.177-181.

Google Scholar

[32] H.G. Park and M. Y. Chae. J. Chem. Technol. Biotechnol. Vol. 79(2004), pp.1080-1083.

Google Scholar

[33] R.P. Dhakal, K.N. Ghimire, K. Inoue, M. Yano and K. Makino. Sep. Purif. Technol. Vol. 42(2005), pp.219-225.

Google Scholar

[34] C. Jeon, J. Y. Park and Y. J. Yoo. Biochem. Eng. J. Vol. 11(2002), pp.159-166.

Google Scholar

[35] D.H. Zhao and H.W. Gao. Environ. Sci. Pollut. Res. Int. Vol. 17(2010), pp.97-105..

Google Scholar

[36] Z.J. Hu, Y. Xiao, D.H. Zhao, Y.L. Shen and H.W. Gao. J. Hazard Mater. Vol. 175(2010), pp.179-186.

Google Scholar

[37] D.H. Zhao, Y.L. Shen, Y.L. Zhang, D.Q. Wei, N.Y. Gao and H.W. Gao. J. Mater. Chem. Vol. 20(2010), p.3098~3106

Google Scholar

[38] H.Y. Wang and H.W. Gao. Environ. Sci. Pollut. Res. Vol. 16(2009) pp.339-347.

Google Scholar

[39] M. Doğan, Y. Turhan, M. Alkan, H. Namli, P. Turan and Ö. Demirbaş. Desalination Vol. 230(2008), pp.248-268.

DOI: 10.1016/j.desal.2007.11.029

Google Scholar

[40] Z.G. Zhao, Application of adsorption principle, Beijing, Chemical industry press, 2005, pp.198-199

Google Scholar

[41] F. Adam and J.H. Chua. J. Colloid Interf. Sci. Vol. 280 (2004), pp.55-61.

Google Scholar

[42] A. Demirbas, E. Pehlivan, F. Gode, T. Altun and G. Arslan. J. Colloid Interf. Surface Vol. 282 (2005), pp.20-25.

Google Scholar

[43] H.M. Park, D.J. Moon. J. Chem. Eng. Data Vol. 48 (2003), pp.908-910.

Google Scholar

[44] M. Stratmann and M. Rohwerder. Nature Vol. 410(2011), pp.420-422.

Google Scholar

[45] T. Banu and G. Güçlü. Desalination Vol. 249(2009), p.1377–1379.

Google Scholar

[46] E. Eren. J. Hazard. Mater. Vol. 166 (2009), p.88–93.

Google Scholar

[47] A.M. Almutlaq and M.M. El-Halwagi. Int. J. Environ. Pollut. Vol. 29(2007), pp.14-18.

Google Scholar

[48] J.H. Mo, Y.H. Lee, J. Kim, J.Y. Jeong and J. Jegal. Dyes Pigm. Vol. 76 (2008), pp.429-434.

Google Scholar

[49] M. Bielska and K. Prochaska. Dyes Pigm. Vol. 74(2007), pp.410-415.

Google Scholar

[50] Y.P. Wei and H.W. Gao. J. Mater. Chem. Vol. 22(2012), pp.5715-5722.

Google Scholar

[51] A. Tal. Science, Vol.313(2006), pp.1081-1084.

Google Scholar