An Oxide-Diluted Magnetic Semiconductor: Co-Doped ZnO

Article Preview

Abstract:

The discovery of ferromagnetism (FM) in wide band-gap semiconductors doped with transition metals (TM), known as diluted magnetic semiconductors (DMSs), has attracted much interest. These materials are applicable to spin-based optoelectronic devices working at room temperature (RT). Among DMSs, the system of Co-doped ZnO is considered as the most promising candidate, which was expected to robust magnetism. This paper focuses primarily on the recent progress in the experimental studies of ZnO:Co DMSs. The magnetic properties and possible mechanism of ZnO:Co DMSs prepared by different methods are summarized and reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

585-589

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W Prellier, A. Fouchet, B. Mercey, etc. Appl . Phys. Lett. 82, 3490 (2003).

Google Scholar

[2] Hyeon-Jun Lee, Se-Young Jeong etc. Appl . Phys. Lett. 81, 4020 (2002).

Google Scholar

[3] Kim J H, Kim H, Kim D, etc. Physica B 327, 304 (2003).

Google Scholar

[4] K. Ueda, H. Tabata and T. Kawai. Appl. Phys. Lett. 79, 988 (2001).

Google Scholar

[5] K Sato and H KatayamarYoshida. Jpn. J. AppL. Phys., Part 2 39, 555 (2000).

Google Scholar

[6] K Sato and H KatayamarYoshida. Jpn. J. AppL. Phys. Part2 40, 334 (2001).

Google Scholar

[7] KenjiUeda, Hitoshi Tabata, Tomoji Kawai. Appl. Phys. Lett. 79, 988 (2001).

Google Scholar

[8] Peng Yingzi, etc. CHINESE SCIENCE BULLETIN 52, 1864 (2007).

Google Scholar

[9] Z. Yang, M. Biasini, etc. J. AppL. Phys. 104, 113712 (2008).

Google Scholar

[10] Ye Xiaojuan, etc. Science in China Series G: Physics in Chinese 38, 1511 (2008).

Google Scholar

[11] Y.B. Zhang and S. Li, etc. J. AppL. Phys. 105, 07C504-1 (2009).

Google Scholar

[12] Zhang Lei, etc. Chinese Journal of the Chinese Ceramic Society 37, 1560 (2009).

Google Scholar

[13] Li Borui, Guan Wenjie. Chinese Popular Science & Technology 8, 108 (2010).

Google Scholar

[14] Y.B. Zhang,Q. Liu,T. Sritharan, etc. Appl . Phys. Lett. 89, 042510 -1 (2006).

Google Scholar

[15] Wu Wenqing, Shi Tongfei, etc. Acta Phys. Sin. in Chinese 57, 4328 (2008).

Google Scholar

[16] PENG Long, ZHANG Huai-Wu, etc. CHIN. PHYS. LETT. 25, 1438 (2008).

Google Scholar

[17] Wu Dingcai, etc. Chinese Semiconductor Optoelectronics 31, 575 (2010).

Google Scholar

[18] Li Yumei, etc. Chinese Journal of Synthetic Crystals 39, 465 (2010).

Google Scholar

[19] Liu Qinghua, etc. Chinese Journal of Normal University 34, 292 (2010).

Google Scholar

[20] Q. Liu, C. L. Yuan, C. L. Gan, etc. J. Appl. Phys. 110: 033907-1 (2011).

Google Scholar

[21] Hao Gu, Wen Zhang, Yongbing Xu , etc. Appl . Phys. Lett. 100, 202401-1 (2012).

Google Scholar

[22] Wang Yongqiang, etc. Chinese Journal of Low Temperature Physics 28, 17 (2006).

Google Scholar

[23] LI Bin-Bin, SHEN Hong-Lie, etc. CHIN. PHYS. LETT. 4, 3473 (2007).

Google Scholar

[24] S. Karamat,C. Ke,T.L. Tan, etc. Applied Surface Science 255, 4814 (2009).

Google Scholar

[25] Xu Guangliang, etc. Chinese Journal of Synthetic Crystals 38, 1582 (2010).

Google Scholar

[26] A. Di Trolio, R. Larciprete, etc. Appl. Phys. Lett. 97: 052505-1 (2010).

Google Scholar

[27] Gao Qian, etc. Chinese Acta Metallurgica Sinica 47, 337 (2011).

Google Scholar

[28] Fengchun Hu, Qinghua Liu, etc. J. Appl. Phys. 109: 103705-1 (2011).

Google Scholar

[29] Shi Tongfei, etc. Chinese Journal of University of Science and Technology 37, 539 (2007).

Google Scholar

[30] Zhang Mingyu, etc. Chinese Journal of Low Temperature Physics 32, 75 (2010).

Google Scholar