Hydrothermal Synthesis and Photoluminescence Properties of Ca(MoO4)x(WO4)(1-X) Microcrystallines

Article Preview

Abstract:

Ca(MoO4)x(WO4)(1-x) solid solution microcrystallines were synthesized by hydrothermal method at 120 °C; the crystal structure, surface morphology and room temperature photoluminescence properties of the as-synthesized microcrystallines were investigated by through X-ray diffraction (XRD), scanning electron micrograph (SEM), Fourier transform infrared spectroscopy (FT-IR) and fluorescence analysis (FA), respectively. Our results show that the obtained Ca(MoO4)x(WO4)(1-x)microcrystallines are single-phase scheelite structure with tetragonal symmetry. The grain size of the Ca(MoO4)x(WO4)(1-x) microcrystallines gradually increases with the increasing x (except x=0) and their agglomeration also becomes serious with x increasing. Under excited by 245 nm or 280 nm ultraviolet light (UV-light) at room temperature, the emission spectra of the Ca(MoO4)x(WO4)(1-x) microcrystallines vary slightly from 410nm to 490nm with increasing x. Whereas the emission intensity of Ca(MoO4)x(WO4)(1-x) microcrystallines changed markedly, and it increases with the increasing x (x>0).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

599-606

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.Y. Zhou, J.S. Wei, J.R. Wu, F.Z. Gong, L.G. Yi, J.L. Huang, J. Alloys Compd. 476 (2009) 390-392.

Google Scholar

[2] M.V. Nazarov, B.S. Tsukerblat, E. J. Popovici, D.Y. Jeon, Phys. Lett. A. 330 (2004) 291-298.

Google Scholar

[3] A. Kato, S. Oishi, T. Shishido, M. Yamazaki, S. Iida, J. Phys. Chem. Solids. 66 (2005) 2079-(2081).

Google Scholar

[4] T. Thongtem, A. Phuruangrat, S. Thongtem, J. Ceram. Process. Res. 9 (2008) 189-191.

Google Scholar

[5] A. KateInikovas, L. Grigorjeva, D. Millers, V. Pankratov, A. Kareiva Lithuanian, J. Phys. B. 47 (2007) 63-68.

Google Scholar

[6] J. TheoKloprogge, MattL. Weier, LocV. Duong, RayL. Frost, Mater. Chem. Phys. 88 (2004) 438-443.

Google Scholar

[7] V. Thangadurai, C. Knittlmayer, W. Weppner, Mater. Sci. Eng. B, 106 (2004) 228-233.

Google Scholar

[8] J.S. Liao, B. Qiu, H.R. Wen, J.G. Chen, W.X. You, L.G. Liu, J. Alloys Compd. 487 (2009) 758-762.

Google Scholar

[9] C. Xu, D.B. Zou, H. Guo, F. Jie, T.K. Ying, J. Lumin. 129 (2009) 474-477.

Google Scholar

[10] F. Zhang, MatthewY. Sfeir, JamesA. Misewich, StanislausS. Wong, Chem. Mater. 20 (2008) 5500-5512.

Google Scholar

[11] V.M. Longo, E. Orhan, L.S. Cavalcante, S.L. Porto, J.W.M. Espinosa, J.A. Varela, E. Longo, Chem. Phys. 334 (2007) 180-188.

DOI: 10.1016/j.chemphys.2007.02.025

Google Scholar

[12] D. Rangappa, T. Fujiwara, T. Watanabe, M. Yoshimura, Mater. Chem. Phys. 109 (2008) 217-223.

Google Scholar

[13] C.T. Xia, V.M. Fuenzalida, R.A. Zarate, J. Alloys Compd. 316 (2001) 250-255.

Google Scholar

[14] J.S. Liao, B. Qiu, H.R. Wen, W.X. You, Opt. Mater. 31 (2009) 1513-1516.

Google Scholar

[15] Y.G. Su, L.P. Li, G.S. Li, Chem. Mater. 20 (2008) 6060-6067.

Google Scholar

[16] S. K Shi, J. Gao, J. Zhou, Opt. Mater. 30 (2008) 1616-1620.

Google Scholar

[17] X. Li, Z.P. Yang, L. Guan, J.X. Guo, Y. Wang, Q.L. Guo, J. Alloys Compd. 478 (2009) 684-686.

Google Scholar

[18] G.Z. Li, Z.L. Wang, Z.W. Quan, C.X. Li, J. Lin, Cryst. Growth Des. 7 (2007) 1797-1802.

Google Scholar

[19] F. Lei, B. Yan, J. Solid State Chem. 181 (2008) 855-862.

Google Scholar

[20] Z.L. Wang, H.B. Liang, Q. Wang, L.J. Luo, M.L. Gong, Mater. Sci. Eng. B, 164 (2009) 120-123.

Google Scholar

[21] T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. Lett. 62 (2008) 454-457.

Google Scholar

[22] G.K. Choi, S.Y. Cho, J.S. An, K.S. Hong, J. Eur. Ceram. Soc. 26 (2006) 2011-(2015).

Google Scholar

[23] P. Afanasiev: Mater. Lett. 61 (2007) 4622-4626.

Google Scholar

[24] G.H. Jia, C.Y. Tu, Z.Y. You, J.F. Li, Z.J. Zhu, Y. Wang, B.C. Wu, J. Cryst. Growth 273 (2004) 220-225.

Google Scholar

[25] G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong. J. Eur. Ceram. Soc. 27 (2007) 3063-3067.

Google Scholar

[26] T. Thongtem, A. Phuruangrat, S. Thongtem, Appl. Surf. Sci. 254 (2008) 7581-7585.

Google Scholar

[27] P. Yu, J. Bi, D.J. Gao, D.Q. Xiao, L.P. Chen, X.L. Jin, Z.N. Yang, J. Electroceram. 21 (2008 184-188.

Google Scholar

[28] J. Bi, D.Q. Xiao, D.J. Gao, P. Yu, G.L. Yu, W. Zhang, J.G. Zhu, Cryst. Res. Technol. 11 (2003) 935-940.

Google Scholar

[29] J. Bi, C.H. Cui, X. Lai, F. Shi, D.J. Gao, Mater. Res. Bull. 43 (2008) 743-747.

Google Scholar

[30] J.H. Ryu, S.Y. Bang, J.W. Yoon, C.S. Lim, K.B. Shim: Appl. Surf. Sci. 253 (2007) 8408-8414.

Google Scholar

[31] A. Phuruangrat, T. Thongtem, S. Thongtem, J. Alloys Compd. 481 (2009) 568-572.

DOI: 10.1016/j.jallcom.2009.03.037

Google Scholar

[32] L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, J.A. Varela, PS. Pizani, E. Longo, J. Alloys Compd. 474 (2009) 195-200.

DOI: 10.1016/j.jallcom.2008.06.049

Google Scholar

[33] J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.W.M. Espinosa, PS. Pizani, J.A. Varela, E. Longo, J. Colloid Interface Sci. 330 (2009) 227-236.

DOI: 10.1016/j.jcis.2008.10.034

Google Scholar

[34] Y. Min, Z.Y. Huang, F.L. Hu, X.Y. Li, Mater. Lett. 63 (2009) 742-744.

Google Scholar

[35] J.W. Yoon, J. HoRyu, K.B. Shim, Mater. Sci. Eng. B, 127 (2006) 154-158.

Google Scholar

[36] F. Lei, B. Yan, J. Solid State Chem. 181 (2008) 855-862.

Google Scholar

[37] T. Thongtem, A. Phuruangrat, S. Thongtem, Curr. Appl. Phys. 8 (2008) 189-197.

Google Scholar

[38] G.X. Zhang, R.P. Jia, Q.S. Wu, Mater. Sci. Eng. B, 128 (2006) 254-259.

Google Scholar

[39] J.C. Sczancoski, L.S. Cavalcante, N.L. Marana, R.O. Dasilva, R.L. Tranquilin, M.R. Joya, P.S. Pizani, Curr. Appl. Phys. 10 (2010) 614-624.

DOI: 10.1016/j.cap.2009.08.006

Google Scholar