Optical Properties and Defect Study of Ca2+ Co-Doping Lu2Si2O7:Ce3+ Single Crystal Scintillator

Article Preview

Abstract:

Single crystal of Lu2Si2O7 (LPS):0.5%Ce,0.1%Ca was grown by the Czochralski method. The X-ray excited luminescence (XEL), photoluminescence excitation (PLE), photoluminescence (PL) and transmittance spectra were measured and discussed. The as grown LPS:Ce,Ca sample presents excellent optical quality with 81% transmittance. Two absorption peaks locate at 300 and 350 nm, corresponding to the electron transition of Ce3+ from 4f ground to 5d1 and 5d2 respectively. According to the Gaussian fitting, the XEL curve of LPS:Ce,Ca can be fitted into two peaks centering at 378 and 407 nm respectively. It is found that the addition of Ca2+ in LPS:Ce introduces more oxygen vacancies, leading to the decreases of the luminescence efficiency of LPS:Ce. Through the thermally stimulated luminescence (TSL) measurement, two kinds of charge trap are found in LPS:Ce,Ca, whose energy depths are 1.20 and 1.47 eV. The trap at 1.20 eV is intrinsic electron trap induced by Ce3+ doping in LPS host and the other trap is formed by the both impact of and defects.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

616-621

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] van C.W.E. Eijk: Nucl. Instrum. Method A Vol. 460: (2001), p.1.

Google Scholar

[2] D. Pauwels, N. le Masson, B. Viana, A. Kahn-Harari, van E.V.D. loef, P. Dorenbos and van C.W.E. Eijk.: IEEE T Nucl. Science Vol. 47: (2000), p.1787.

DOI: 10.1109/23.914446

Google Scholar

[3] L. Pidol, A. Kahn-Harari, B. Viana, B. Ferrand, P. Dorenbos, J. T. M. de Haas, van C.W.E. Eijk and E. Virey: J Phys.: Condens. Matter Vol. 15: (2003), p. (2091).

DOI: 10.1109/nssmic.2003.1351838

Google Scholar

[4] L. Pidol, B. Viana, A. Kahn-Harari, A. Bessiere and P. Dorenbos: Nucl. Instrum. Method A Vol. 537: (2005), p.125.

Google Scholar

[5] P. Szupryczynski, C. L. Melcher, M. A. Spurrier, A. A. Carey, M. P. Maskarinec, B. Chakoumakos, C. Rawn and R. Nutt: Proc. IEEE Nucl. Sci. Symp. Conference Vol. 3: (2005), p.1310.

DOI: 10.1109/nssmic.2005.1596561

Google Scholar

[6] L. Pidol, O. Guillot-Noel, M. Jourdier, A. Kahn-Harari, B. Ferrand, P. Dorenbos and D. Gourier: J Phys. : Condens. Matter Vol. 15: (2003), p.7815.

DOI: 10.1088/0953-8984/15/45/019

Google Scholar

[7] M.A. Spurrier, P. Szupryczynski, , Yang, K., A.A. Carey, C.L. Melcher: IEEE T Nucl. Science Vol. 55: (2008), p.1178.

Google Scholar

[8] H. Feng, D.Z. Ding, H.Y. Li, S. Lu, S.K. Pan, X.F. Chen and G.H. Ren: J Appl. Physics Vol. 103: (2008), p.083109.

Google Scholar

[9] D.W. Cooke, B.L. Bennett, E.H. Farnum, W.L. Hults, R.E. Muenchausen and J.L. Smith: Appl. Phys. Letter Vol. 70: (1997), p.3594.

DOI: 10.1063/1.119243

Google Scholar

[10] R. Chen: J Electrochem. Society Vol. 116: (1969), p.1254.

Google Scholar

[11] L. Pidol, B. Viana, A. Galtayries and P. Dorenbos: Phys. Reveiw B Vol. 72: (2005), p.125110.

Google Scholar