Sliding Mode Control in Finite Time Stabilization for Synchronization of Chaotic Systems

Article Preview

Abstract:

An adaptive sliding mode control for chaotic systems synchronization is considered. The design of robust finite time convergent controller is based on geometric homogeneity and integral sliding mode manifold. The knowledge of the upper bound of the system uncertainties is not prior required. System stability is proven by Lyapunov theory. The simulation results show the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 655-657)

Pages:

1484-1487

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.Y. Qin, H. Su, Y. F. Yang: Acta Phys. Sin. , Vol. 57(2008), pp.2704-2707. (in Chinese).

Google Scholar

[2] J.X. Jin, S.S. Qiu: Acta Phys. Sin., Vol. 59(2010), pp.792-800. (in Chinese).

Google Scholar

[3] M.P. Aghababa,S. Khanmohammadi,G. Alizadeh: Appl. Math. Model, Vol. 35(2011), pp.3080-3091.

Google Scholar

[4] S. Etemadi, A. Alasty, H. Salarieh: Physics Letters A, Vol. 357(2006), pp.17-21.

Google Scholar

[5] H. Yau, J. Yan: Appl. Math. Comput., Vol. 197(2008), pp.775-788.

Google Scholar

[6] M. Feki: Chaos Soliton Fract., Vol. 41 (2009), pp.1390-1400.

Google Scholar

[7] J. Yan, M. Hung, T. Chiang, Y. Yang: Physics Letters A, Vol. 356 (2006), pp.220-225.

Google Scholar

[8] H.T. Yau: Chaos Soliton Fract., Vol. 22 (2004), pp.341-347.

Google Scholar

[9] C. Lin, Y. Peng, M. Lin: Chaos Soliton Fract., Vol. 42 (2009) , pp.981-988.

Google Scholar

[10] A. Levant, L. Alelishvili: IEEE Trans. Autom. Control, Vol. 52(2007), pp.1278-1282.

Google Scholar

[11] A. Levant: Automatica, Vol. 41(2005), pp.823-830.

Google Scholar

[12] S. Laghrouche, F. Plestan, A. Glumineau: Automatica, Vol. 43(2007), pp.531-537.

DOI: 10.1016/j.automatica.2006.09.017

Google Scholar

[13] S. Bhat, D. Bernstein, D. Ernstein: Math. Control, Signals Systems, Vol. 17(2005), pp.101-127.

Google Scholar