[1]
Fujisaka H, Yamada T, Stability theory of synchronization motion in coupled-oscillator systems, Prog Theor Phys. vol. 69(1992), pp.32-71.
Google Scholar
[2]
Pecora L M, Carroll T L, Synchronization in chaotic systems, Phys Rev Lett, 1990, vol. 64, pp.821-824.
DOI: 10.1103/physrevlett.64.821
Google Scholar
[3]
M.J. Park, O.M. Kwon , Synchronization criteria for coupled stochastic neural networks with time-varying delays, Journal of the Franklin Institute. vol. 349(2012)pp.1699-1720.
DOI: 10.1016/j.jfranklin.2012.02.002
Google Scholar
[4]
Hongjie Yu, Jianhua Peng, Chaotic synchronization and control in nonlinear-coupled Hindmarsh–Rose neural systems, Chaos, Solitons & Fractals. Vol. 29(2006) p.342–348.
DOI: 10.1016/j.chaos.2005.08.075
Google Scholar
[5]
Wu Yongqing, Li Changpin; Wu YuJiang, Generalized synchronization between two different complex networks, Communications in Nonlinear Science and Numerical Simulations. vol. 17(2012), pp.349-355.
DOI: 10.1016/j.cnsns.2011.04.026
Google Scholar
[6]
Qintao Gan, Renxi Hu, Yuhua Liang, Adaptive synchronization for stochastic competitive neural networks with mixed time-varying delays, Communications in Nonlinear Science and Numerical Simulations. vol. 17(2012), pp.3708-3718.
DOI: 10.1016/j.cnsns.2012.01.021
Google Scholar
[7]
Xuefei Wu, Chen Xu, Cluster synchronization of nonlinearly coupled neural networks with hybrid time-varying delays and stochastic perturbations via pinning control, JCIT: Journal of Convergence Information Technology. vol. 7(2012), pp.101-111.
DOI: 10.4156/jcit.vol7.issue6.13
Google Scholar