Nanocellulose Applications in Environmental Protection

Article Preview

Abstract:

Nanocellulose has attracted a great deal of interest as a source of nanometer-sized materials because of their biodegradability, easy availability, and the related characteristics such as a very large surface-to-volume ratio, and outstanding mechanical property. This article assembles the current applications of nanocellulose, which has been used as adsorbent for heavy metals, and reinforcement for biodegradable materials. Furthermore, the article provides possible applications of nanocellulose, especially, in the environmental protection field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-201

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Cherian, Bibin Mathew, Leao, Alcides Lopes, Souza, Sivoney Ferreira, Thomas, Sabu, Pothan, Laly A., Kottaisamy, M. Cellulose , Nanocomposites for High-Performance Applications, Springer Berlin Heidelberg, 2011, Pages 539-587.

DOI: 10.1007/978-3-642-17370-7_21

Google Scholar

[2] O'Connell et al., 2006c D.W. O'Connell, C. Birkinshaw, T.F. O'Dwyer A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutions J. Chem. Technol. Biotechnol., 81 (2006), p.1820–1828.

DOI: 10.1002/jctb.1609

Google Scholar

[3] Liu and Sun, 2008S. Liu, G. Sun Radical graft functional modification of cellulose with allyl monomers: chemistry and structure characterization Carbohyd. Polym., 71 (2008), p.614–625.

DOI: 10.1016/j.carbpol.2007.07.006

Google Scholar

[4] Kongliang Xie, Lixia Jing, Weiguo Zhao, Yanli Zhang. Adsorpti on Remov al of Cu 2+and Ni2+ from Waste Water Using Nano-Cellulose Hybrids Containing Reactive Polyhedral Oligomeric Silsesquioxanes, Journal of Applied Polymer Science, Vol . 1 22, 2864–2 868 (201 1).

DOI: 10.1002/app.34411

Google Scholar

[5] LU Min, GUAN Xiao hui, WEI De zhou, LI Yan ying. Adsorption Property and Mechanism of Ammonium SulfamateBacterial Cellulose to Pb2+, Journal of Northeastern University, Vol 32, No. 7 Jul. (2011).

Google Scholar

[6] Chen, Shiyan, Shen, Wei, Yu, Feng, Wang, Huaping, Kinetic and thermodynamic studies of adsorption of Cu2+ and Pb2+ onto amidoximated bacterial cellulose, Springer Berlin / Heidelberg, Volume: 63, Issue: 2, 29 April 2009, Pages 283-297.

DOI: 10.1007/s00289-009-0088-1

Google Scholar

[7] Kongliang Xie, Weiguo Zhao, Xuemei He, Adsorption properties of nano-cellulose hybrid containing polyhedral oligomeric silsesquioxane and removal of reactive dyes from aqueous solution, Carbohydrate Polymers, Volume 83, Issue 4, 1 February 2011, Pages 1516-1520, ISSN 0144-8617.

DOI: 10.1016/j.carbpol.2010.09.064

Google Scholar

[8] Tokoro, Ryoko, Vu, Duc. How to improve mechanical properties of polylactic acid with bamboo fibers Journal Name: Journal of Materials Science, Springer Netherlands, Volume: 43, Issue: 2, january 2008, Page: 775-787.

DOI: 10.1007/s10853-007-1994-y

Google Scholar

[9] Atsuhiro Iwatake, Masaya Nogi, Hiroyuki Yano, Cellulose nanofiber-reinforced polylactic acid, Composites Science and Technology, Volume 68, Issue 9, July 2008, Pages 2103-2106.

DOI: 10.1016/j.compscitech.2008.03.006

Google Scholar

[10] Nakagaito, A.N., Iwamoto, S., Yano, H. Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites, Springer Berlin / Heidelberg, 1 January, 2005, Pages 93-97.

DOI: 10.1007/s00339-004-2932-3

Google Scholar

[11] A. Sturcova , G.R. Davies, S.J. Eichhorn, Biomacromolecules 6 (2005) 1055.

Google Scholar

[12] M. Sternitzke, B. Derby, R.J. Brook, Alumina/silicon carbide nanocomposites by hybrid polymer/powder processing: microstructures and mechanical properties, J Am Ceram Soc, 81 (1) (1998), p.41–48.

DOI: 10.1111/j.1151-2916.1998.tb02293.x

Google Scholar

[13] A.J. Brown, On an acetic ferment which forms cellulose, Journal of the Chemical Society, Transactions, 1886.

Google Scholar

[14] K.V. Ramana, A. Tomar, L. Singh Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum World J. Microbiol. Biotechnol., 16 (2000), p.245.

Google Scholar

[15] L. Singh, K.V. Ramana, S. Banerjee, V. Dubey, R.S. Chauhan, Studies on bacterial cellulose membrane production and its structural properties Proceedings of the IMS XIV National Symposium on Membranes in Chemical and Biochemical Industries, IIT Delhi, India, 16–17 February (1996).

Google Scholar

[16] S. Mosaka, T. Ohe, N. Sakota, Production of cellulose from glucose by Acetobacter xylinum,J. Ferment. Bioeng., 75 (1993), p.18.

DOI: 10.1016/0922-338x(93)90171-4

Google Scholar

[17] M. Matsuoka, T. Tsuchida, K. Matsushita, O. Adachi, F. Yoshinaga, A synthetic medium for bacterial cellulose production by Acetobacter xylinum sub-species sucrofermentans Biosci. Biotechnol. Biochem., 60 (1996), p.575.

DOI: 10.1271/bbb.60.575

Google Scholar

[18] S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, Y. Mitsucheshi, Y. Nishi, M. Uryu, The structure and mechanical properties of sheets prepared from bacterial cellulose, J. Mater. Sci., 24 (1989), p.3141.

DOI: 10.1007/bf01139032

Google Scholar

[19] V. Dubey, C. Saxena, L. Singh, K.V. Ramana, R.S. Chauahan, Pervaporation of binary water–ethanol mixtures through bacterial cellulose membrane, Sep. Purif. Technol., 27 (2002), p.163.

DOI: 10.1016/s1383-5866(01)00210-6

Google Scholar

[20] Lokesh Kumar Pandey, Chhaya Saxena, Vinita Dubey, Studies on pervaporative characteristics of bacterial cellulose membrane, Separation and Purification Technology, Volume 42, Issue 3, April 2005, Pages 213-218, ISSN 1383-5866.

DOI: 10.1016/j.seppur.2004.07.014

Google Scholar