Applications of Nanotechnology in Hip Implants

Article Preview

Abstract:

With the development of medical technology, the medical surgery requires increasingly advanced biomimetic materials. The ideal joint prosthesis should have following properties anti-corrosion, bone ingrowth, anti-infection and same mechanical properties of natural bone. In recent years, nanomaterials in orthopedic applications attracted more and more attention. Nanometer-size materials made ceramics, polyethylene, metals have been tested and verified in orthopedic implants. As the devices made by nanomaterials can mimic the dimensions of constituent components of natural bone, so it could promote adequate osteointegration and enable the prosthesis to be successful for long time. In this paper, we discussed the nanomaterials’ ability to promote bone growth, ingrowth and anti-infection of the joint prosthesis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-222

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lentino JR. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 2003; 36: 1157–61.

DOI: 10.1086/374554

Google Scholar

[2] Hip and Knee arthroplasty ANNUAL REPORT 2011. National Joint Replacement Registry, p.42.

Google Scholar

[3] Information on http: /en. wikipedia. org/wiki/Nanophase_materials.

Google Scholar

[4] Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process – an alternative to plasma spraying. Biomaterials. 2005; 26(3): 327–337.

DOI: 10.1016/j.biomaterials.2004.02.029

Google Scholar

[5] Burgess AV, Story BJ, La D, Wagner WR, LeGeros JP. Highly crystalline MP-1 hydroxylapatite coating. Part I: in vitro characterization and comparison to other plasma-sprayed hydroxylapatite coatings. Clin Oral Implants Res. 1999; 10(4): 245–256.

DOI: 10.1034/j.1600-0501.1999.100401.x

Google Scholar

[6] Chou L, Marek B, Wagner WR. Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials. 1999; 20(10): 977–985.

DOI: 10.1016/s0142-9612(98)00254-3

Google Scholar

[7] Svanborg LM, Andersson M, Wennerberg A. Surface characterization of commercial oral implants on the nanometer level. J Biomed Mater. Res B Appl Biomater. 2010; 92(2): 462–469.

DOI: 10.1002/jbm.b.31538

Google Scholar

[8] Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010; 25(1): 63–74.

Google Scholar

[9] Masahiro Yamada, Takeshi Ueno, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro Ogawa. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants . International Journal of Nanomedicine 2012: 7 859–873.

DOI: 10.2147/ijn.s28082

Google Scholar

[10] Sybille Facca, Debrupa Lahiri, Florence Fioretti, Nadia Messadeq, Didier Mainard, Nadia Benkirane-Jessel, Arvind Agarwa . In Vivo Osseointegration of Nano-Designed Composite Coatings on Titanium Implants. American Chemical Society Vol. 5(2010).

DOI: 10.1021/nn200768c

Google Scholar

[11] Mendonca G, Mendonca DB, Aragao FJ, Cooper LF. Advancing dental implant surface technology – from micron- to nanotopography. Biomaterials. 2008; 29(28): 3822–3835.

DOI: 10.1016/j.biomaterials.2008.05.012

Google Scholar

[12] Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010; 25(1): 63–74.

Google Scholar

[13] Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008; 29(8): 970–983.

DOI: 10.1016/j.biomaterials.2007.11.009

Google Scholar

[14] Sabrina D. Puckett, Erik Taylor , Theresa Raimondo, Thomas J. Webster. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31 (2010) 706–713.

DOI: 10.1016/j.biomaterials.2009.09.081

Google Scholar

[15] Berman E. Toxic metals and their analysis. London: Heyden; 1980. p.121–145.

Google Scholar

[16] Berger TJ, Spadaro JA, Chapin SE, et al. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 1976; 9: 357–8.

DOI: 10.1128/aac.9.2.357

Google Scholar

[17] Kutsal Devrim Secinti, Hakan Özalp, Ayhan Attar, Mustafa F. Sargon. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. Journal of Clinical Neuroscience 18 (2011) 391–395.

DOI: 10.1016/j.jocn.2010.06.022

Google Scholar

[18] Hannouche D, Zaoui A, Zadegan F, Sedel L, Nizard R. Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty. Int Orthop. 2011 Feb; 35(2): 207-13.

DOI: 10.1007/s00264-010-1187-1

Google Scholar

[19] Zywiel MG, Sayeed SA, Johnson AJ, Schmalzried TP, Mont MA. Survival of hard-on-hard bearings in total hip arthroplasty: a systematic review. Clin Orthop Relat Res. 2011 Jun; 469(6): 1536-46.

DOI: 10.1007/s11999-010-1658-0

Google Scholar

[20] Girard J, Bocquet D, Autissier G, Fouilleron N, Fron D, Migaud H. Metal-on-metal hip arthroplasty in patients thirty years of age or younger. J Bone Joint Surg Am. 2010 Oct 20; 92(14): 2419-26.

DOI: 10.2106/jbjs.i.01644

Google Scholar

[21] Greene JW, Malkani AL, Kolisek FR, Jessup NM, Baker DL. Ceramic-on-ceramic total hip arthroplasty. J Arthroplasty. 2009 Sep; 24(6 Suppl): 15-8.

DOI: 10.1016/j.arth.2009.04.029

Google Scholar

[22] D'Antonio JA, Sutton K. Ceramic materials as bearing surfaces for total hip arthroplasty. J Am Acad Orthop Surg. 2009 Feb; 17(2): 63-8.

Google Scholar

[23] S. Affatato, R. Torrecillas, P. Taddei, M. Rocchi, C. Fagnano, G. Ciapetti, A. Toni1. Advanced Nanocomposite Materials for Orthopaedic Applications. A Long-Term In Vitro Wear Study of Zirconia-Toughened Alumina. Published online 16 November 2005 in Wiley InterScience DOI: 10. 1002/jbm. b. 30462.

DOI: 10.1002/jbm.b.30462

Google Scholar

[24] Schehl M, Diaz LA, Torrecillas R. Alumina nanocomposites from powder–alkoxide mixtures. Acta Mater 2002; 50: 1125–1139.

DOI: 10.1016/s1359-6454(01)00413-x

Google Scholar