Theoretical Study of Adsorption CO Molecule on Palladium-Doped Boron Nitride Nanotubes

Article Preview

Abstract:

By using the density functional theory (DFT), we have investigated CO molecules adsorbed on palladium atom doped (Pd-doped) (5, 5) and (6, 6) boron nitride nanotubes (BNNTs). In order to investigate the electronic and structural properties of all the research objects, we calculated the band gap (Eg), bind energy (Eb), and density of state (DOS). The results show that energy gaps of BNNTs reduced by doped impurity Pd atom, but there are no obvious changes with the tube diameter of Pd-BNNTs change. One impurity Pd atom substituting one B (PdB) or N atom (PdN) of pristine BNNTs can increase the reactivity with CO molecule. The energy gaps for CO molecule adsorption on the tube wall of Pd-BNNTs reduced. This indicates that Pd-doped BNNTs can be considered as nano gas sensitive material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-238

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Nature 354 (1991) 56.

Google Scholar

[2] Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801.

Google Scholar

[3] Kong, J.; Franklin, N.; Zhou, C.; Chapline, M.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622.

Google Scholar

[4] Li, J.; Lu, Y. J.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Nano Lett. 2003, 3, 929.

Google Scholar

[5] Peng, S.; Cho, K. J. Nano Lett. 2003, 3(4), 513.

Google Scholar

[6] Zhao, Q.; Nardelli, M. B.; Lu, W.; Bernholc, J. Nano Lett. 2005, 5(5), 847.

Google Scholar

[7] Wang, R. X.; Zhang, D. J.; Wu, J.; Liu, C. B. Acta Chim. Sinica 2007, 65, 107 (in Chinese).

Google Scholar

[8] X. Blasé, A. Rubio, S. Louie, and M. Cohen, Europhys. Lett. 28 (1994) 335.

Google Scholar

[9] G. Guo and J. Lin, Phys. Rev. B 71 (2005) 165402-1.

Google Scholar

[10] B. G. DEMCZYR, J. CUMINGS, ZETTLA, et al., Appl. Phys. Lett. 78 (2001) 2772.

Google Scholar

[11] Wang, R. X.; Zhang, D. J.; Liu, C. B. Acta Chim. Sinica 2010, 68, 315-319 (in Chinese).

Google Scholar

[12] P. N. D'yachkov, D. V. Makaev, J. Phys. Chem. Soli. 70 (2009) 180.

Google Scholar

[13] K. H. He, G. Zheng, G. Chen, M. Wan, G. F. Ji, Phys. B 403 (2008) 4213.

Google Scholar

[14] B. H. Yan, C. W. Park, J. Ihm, G. Zhuo, W. H. Duan, N. Park, J. Am. Chem. Soc. 130 (2008) 17012.

Google Scholar

[15] R. Z. Ma,Y. Bando, H.W. Zhu,T. Sato, C. Xu, D. H. Wu, J. Am. Chem. Soc. 2002, 124, 7672. doi: 10. 1021/JA026030E.

Google Scholar

[16] Baierle, R. J.; Schmidt, T. M.; Fazzio, A. Solid State Commum. 2007, 142, 49.

Google Scholar

[17] Zhang, J.; Loh, K. P.; Zheng, J. W.; Sullivan, M. B.; Wu, P. Phys. Rev. B 2007, 75, 245301.

Google Scholar

[18] D. R. HARTREE, PROC. CAM. PHIL, J. Soc. 24 (1928) 89.

Google Scholar

[19] J.C. SLATER, Phys. Rev. 51 (1937) 846.

Google Scholar

[20] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) 864-871.

Google Scholar

[21] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[22] M. SEGALL, M. PROBERT, PICKARD C. P., et al., Phys. Cond. Matt. 14 (11) (2002) 2717.

Google Scholar

[23] Li, X. M.; Tian, W. Q.; Huang, X. R.; Sun, C. C.; Jiang, L. Chem. J. Chinese Universities. 2009, 30(12), 2473-2477.

Google Scholar

[24] Wang, R. X.; Zhang, D. J. Aust. J. Chem. 2008, 61, 941-945.

Google Scholar