Ferro-Antiferromagnetic Coupling and Enhancement of Magnetoresistance in La0.67Ca0.33MnO3/LaMnO3 Composites

Article Preview

Abstract:

The samples with the nominal composition of (1-x)La0.67Ca0.33MnO3/xLaMnO3 with x=0.00, 0.05, 0.15 and 0.25 were fabricated using a special experimental method. The electrical transport behaviour and magnetoresistance (MR) were studied for the composites in magnetic fields H=0.3T, 3T. Experimental results show that with the increasing LaMnO3 doping level, the metal–insulator(M-I) transition temperature TP shifts to lower temperature and the resistivity increases sharply in zero magnetic field. Meanwhile, a significant enhancement in MR is observed for the composites especially in the low temperature range(below TP). Specially, the maximum MR at 3 T increased from 35% for the pure La0.67Ca0.33MnO3 to 92% for the sample with x=0.25. We suggest that such enhancement in MR is attributed to the strong ferro-antiferromagnetic coupling effects in the composite system, which increase the magnetic disorder at the grain surface and boundary, will improve the spin-polarized tunneling process of the conducting electron between adjacent grains, and thus enhance the MR effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

485-489

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J Barratt, M R Lees, G Balakrishnan and D McK Paul, Appl. Phys. Lett. 68 (1996) 424-426.

Google Scholar

[2] P Schiffer, A P Ramirez, W Bao and S W Cheong, Phys. Rev. Lett. 75 (1995) 3336-3339.

Google Scholar

[3] A I Coldea et al, Phys. Rev. B 65 (2002) 054402.

Google Scholar

[4] H.Y. Hwang, S. -W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77 (1996)2041-(2044).

Google Scholar

[5] D. Das, A. Saha, S.E. Russek, R. Raj, D. Bahadur, J. Appl. Phys. 93 (2003) 8301-8303.

Google Scholar

[6] Jin Long Bian, Yong Jun Seo, Geun Woo Kim, Ceramics International, Vol. 38 (2012) S439-S442.

Google Scholar

[7] X.S. Yang, L.Q. Yang, C.H. Cheng, L. Lv, Y. Zhao, Physics Procedia, Vol. 27 (2012) P 96-99.

Google Scholar

[8] B. Dieny, V. S. Speriosu, S. S. P. Parkin, Phys. Rev. B 43 (1991) 1297-1300.

Google Scholar

[9] S. Zhang and Z. Li, Phys. Rev. B 65 (2002) 054406.

Google Scholar

[10] A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679-3682.

Google Scholar

[11] S. L. Yuan et al, Phys. Rev. B 68 (2003) 184423.

Google Scholar

[12] A Urushibara, Y Moritomo, T Arima, Phys. Rev. B 51 (1995) 14103-14109.

Google Scholar

[13] J R Sun, B G Shen, H W Yeung and H K Wong,J. Phys. D: Appl. Phys. 35 (2002) 173-176.

Google Scholar

[14] Z.C. Xia, S.L. Yuan, F. Tu, C.Q. Tang, J. Phys. D. Appl. Phys. 35 (2002) 177-180.

Google Scholar

[15] A. de Andres, et al., Appl. Phys. Lett. 74 (1999) 3884-3886.

Google Scholar

[16] P. Raychaudhuri, K. Sheshadri, P. Taneja, Phys. Rev. B 59 (1999) 13919-13926.

Google Scholar

[17] T Zhu, B G Shen, J R Sun, H W Zhao and W S Zhan, Appl. Phys. Lett. 78 (2001) 3863-3865.

Google Scholar

[18] Ll. Balcells, J. Fontcuberta, B. Martinez, Phys. Rev. B 58 (1998) R14697- R14700.

Google Scholar

[19] R. L. Stamps, J. Phys. D: Appl. Phys. 33 (2000) R247-R268.

Google Scholar

[20] A. Alberca, C. Munuera, J. Tornos, Phys. Rev. B 86 (2012) P 144416.

Google Scholar