Droplet Streaming and Nebulization Induced by the Shear Horizontal Surface Acoustic Wave

Article Preview

Abstract:

Droplet streaming and nebulization on a shear horizontal surface acoustic wave device made of 36o Y-cut LiTaO3 have been reported. The streaming pattern inside the droplet is sensitive to the droplet shape, the position to the interdigital transducer, and the aperture size. Droplet nebulization was enhanced with the increased aperture size of the driven IDTs and mainly occurred in horizontal direction along two lateral sides of the droplet, which is perpendicular to the designed SAW propagation direction. The atomization duration increases with the droplet size and decreases with the driven power at a given droplet size. The maximum rate of the atomization is ~0.2 μL/s at an applied power of 6.7 W. This provides a simple and effective method of the integration of both bio-liquid sensing and fluid manipulation on a single substrate for lab-on-chip biosensing platform.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

580-585

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, W.I. Milne, Sens. Actuator B Vol. 143(2010), p.606.

Google Scholar

[2] L.Y. Yeo, J.R. Friend, Biomicrofludics Vol. 33 (2009), p.012002.

Google Scholar

[3] M. Kurosawa, A. Futami, T. Higuchi, Proc. of Int. Conf. on Solid-State Sensors and Actuators, Transducers 97, Chicago, (1997) p.801.

Google Scholar

[4] J.K. Luo, Y.Q. Fu, Y. Li, X.Y. Du, A.J. Flewitt, A.J. Walton, W.I. Milne, J. Micromech. Microeng. Vol. 19 (2009), p.054001.

Google Scholar

[5] T. A. Franke, A. Wixforth, Chem. Phys. Chem. Vol. 9 (2008), p.2140.

Google Scholar

[6] X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, et al, Appl. Phys. Lett. Vol. 93 (2008), p.094105.

Google Scholar

[7] A. Qi, L. Y. Yeo, J. R. Friend, Phys. Fliuds, Vol. 20 (2008), p.074103.

Google Scholar

[8] A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntoshb, L. Spiccia, Lab Chip, Vol. 9 (2009), p.2184.

Google Scholar

[9] J. Ho, M. K. Tan, D. Go, L. Yeo, J. Friend, H. -C. Chang, Anal. Chem. Vol. 83 (2011), p.3260.

Google Scholar

[10] J. R. Friend, L. Y. Yeo, D. R. Arifin, A. Mechler, Nanotechnology Vol. 19 (2008), p.145301.

Google Scholar

[11] D. W. Branch, S. M. Brozik, Biosen. Bioelectron. Vol. 19 (2004), pp.849-859.

Google Scholar

[12] G. Lindner, J. Phys. D: Appl. Phys. Vol. 41 (2008), p.123002.

Google Scholar

[13] D. S. Brodie, Y. Q. Fu, Y. Li, M. Alghane, R. L. Reuben, A. J. Walton, Appl. Phys. Lett. Vol. 99 (2011), p.153704.

DOI: 10.1063/1.3651487

Google Scholar

[14] V. S. Chivukula, M. S. Shur, D. Čiplys, Phys. Stat. Sol. (a) Vol. 10 (2007), p.3209.

Google Scholar

[15] V. L. Zhang, M. H. Kuok, H. S. Lim, S. C. Ng, J. Phys.: Condens. Matter Vol. 14 (2002), p.545.

Google Scholar

[16] X. Y. Du,M. E. Swanwick, Y. Q. Fu, J. K. Luo, A. J. Flewitt, D. S. Lee, S. Maeng, W. I. Milne, J. Micromech. Microeng. Vol. 19 (2009), p.035016.

DOI: 10.1088/0960-1317/19/3/035016

Google Scholar

[17] F. Martin, M. I. Newton, G. McHale, K. A. Melzak, E. Gizeli, Biosen. Bioelectron. Vol. 19 (2004), p.627.

Google Scholar

[18] S. K. Yang, H.Y. Lee, C. Y. Shen, R. Ro, Proc. Natl. Sci. Counc. Republic China Phys. Sci. Eng. Vol. 25 (2001), p.131.

Google Scholar