Template-Free Synthesis of Hierarchical m-ZrO2 Nanorods and its Formation Mechanism

Article Preview

Abstract:

Hierarchical ZrO2 nanorods have recently received considerable attention due to their special physical and chemical properties. However, traditional preparation methods are involved in expensive equipment, complicated process and high production cost. Here we report a simple hydrothermal approach to prepare hierarchical ZrO2 nanorod. The results show that as-synthesized products are composed of many nanorods with 80~150 nm in diameter and 15~20 μm in length. After annealing, the final product was involved into hierarchical monoclinic ZrO2 (m-ZrO2) nanorods, namely, the big nanorod was made up of many small nanorods with 20~30 nm in diameter and 300~500 nm in length. The possible formation mechanism was proposed based on a series of chemical reactions and the natural properties of zirconium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-79

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra and L. Manna: Nat. Mater. Vol. 10 (2011), p.872.

DOI: 10.1038/nmat3121

Google Scholar

[2] R. M. Erb, R. Libanori, N. Rothfuchs and A. R. Studart: Science Vol. 335 (2012), p.199.

Google Scholar

[3] C. Zhang, C. X. Li, J. Yang, Z. Y. Cheng, Z. Y. Hou, Y. Fan and J. Lin: Langmuir Vol. 25 (2009), p.7078.

Google Scholar

[4] D. Min, N. Hoivik, G. U. Jensen, F. Tyholdt, C. Haavik and U. Hanke: Appl. Phys. A Vol. 105 (2011), p.867.

DOI: 10.1007/s00339-011-6582-y

Google Scholar

[5] G. Sumana, M. Das, S. Srivastava and B. D. Malhotra: Thin Solid Films Vol. 519 (2010), p.1187.

DOI: 10.1016/j.tsf.2010.08.067

Google Scholar

[6] S. R. Li, M. S. Li, C. X. Zhang, S. P. Wang, X. B. Ma and J. L. Gong: Int. J. Hydrogen Energ. Vol. 37 (2012), p.2940.

Google Scholar

[7] C. Liu, S. S. Zhao, X. J. Ji, B. Wang and D. X. Ma: Mater. Chem. Phys. Vol. 133 (2012), p.579.

Google Scholar

[8] X. J. Fan, X. Q. Song, X. H. Yang and L. X. Hou: Mater. Res. Bull. Vol. 46 (2011), p.1315.

Google Scholar

[9] F. Huang, Z. Y. Fu, A. H. Yan, W. M. Wang, H. Wang, Y. C. Wang, J. Y. Zhang, Y. B. Cheng and Q. J. Zhang: Cryst. Growth Des. Vol. 9 (2009), p.4017.

Google Scholar

[10] F. Huang, Z. Y. Fu, W. M. Wang, H. Wang, Y. C. Wang, J. Y. Zhang, Q. J. Zhang, S. W. Lee and K. Niihara: Mater. Res. Bull. Vol. 45 (2010), p.739.

Google Scholar

[11] G. Y. Guo, Y. L. Chen and W. J. Ying: Mater. Chem. Phys. Vol. 84 (2004), p.308.

Google Scholar

[12] D. P. Brennan, P. Y. Zavalij and S. R. J. Oliver: J. Solid State Chem. Vol. 179 (2006), p.665.

Google Scholar

[13] V. A. Potyomkin and Y. I. Sukharev: Chem. Phys. Lett. Vol. 371 (2003), p.626.

Google Scholar