Multiscale Image Segmentation Using Energy Minimization

Article Preview

Abstract:

We consider the role of multiscale prior information of the object in the form of a Bayesian framework to address the posterior inference problem. The multiscale prior is implicitly estimated from the given image. We show how the multiscale prior effectively exploits the available image data for hierarchical modeling and exploiting posterior inference scheme to determine the posterior likelihood at each iteration with definite number of iteration steps. Extensive experiments show that this method achieves robust multiscale image segmentation results in the presence of dynamic Gaussian noises.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

940-943

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk: IEEE Trans. Signal Processing. 46(1998), p.886.

Google Scholar

[2] H. Choi , R. G. Baraniuk: Trans. Image Processing. Vol. 10(2001), p.1309.

Google Scholar

[3] S. R. Chang,L. Carin: IEEE Trans. Image Processing. Vol. 15(2006) , p.713.

Google Scholar

[4] N. Signolle, M. Revenu, B. Plancoulaine and P. Herlin: Signal Processing. Vol. 90(2010), p.2412.

DOI: 10.1016/j.sigpro.2009.11.008

Google Scholar

[5] N. Dasgupta, L. Carin: IEEE Transactions on Signal Processing. Vol. 54(2006), p.2352.

Google Scholar