A Cataluminescence-Based Sensor for Detecting Benzene, Toluene and Xylene Vapors Utilizing the Catalytic Reduction on the Surface of Nanosized Al2O3/Pt

Article Preview

Abstract:

A new gas sensor was designed based on cataluminescence (CTL) by using catalytic reduction of benzene, toluene and xylene (BTEX) on the surface of nanosized catalyst Al2O3/Pt with hydrogen as the carrier gas. The result indicated that the sensor showed strong CTL response, high selectivity and excellent durability under optimal conditions: Al2O3/Pt (1%), the temperature of 395oC, the wavelength of 425 nm and the flow rate of 270 mL/min. The detection limit (3σ) is 0.2 ppm for benzene, 0.3 ppm for toluene and xylene. Other corresponding substances such as methanol, ethanol, formaldehyde, acetaldehyde, ethylacetate, ammonia and trichloromethane had no or less interference. It is a simple and convenient sensor with good selectivity and sensitivity for detecting BTEX.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

335-342

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Breysse, B. Claudel, L. Faure, M. Guein, R.J. J Williams, T. Wolkenstein, Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface, J. Catal. 45 (1976) 137-144.

DOI: 10.1016/0021-9517(76)90129-9

Google Scholar

[2] M. Nakagawa, T. Okabayashi, T. Fujimoto, K. Utsunomiya, I. Yamamoto, T. Wada, Y. Yamashita, N. Yamashita, A new method for recognizing organic vapor by spectroscopic image on cataluminescence-based gas sensor, Sens. Actuators B 51 (1998) 159-162.

DOI: 10.1016/s0925-4005(98)00183-x

Google Scholar

[3] T. Okabayashi, T. Fujimoto, I. Yamamoto, K. Utsunomiya, T. Wada, Y. Yamashita, N. Yamashita, M. Nakagawa, High sensitive hydrocarbon gas sensor utilizing cataluminescence of γ-Al2O3 activated with Dy3+, Sens. Actuators B 64 (2000) 54-58.

DOI: 10.1016/s0925-4005(99)00483-9

Google Scholar

[4] M. Nakagawa, N. Yamashita, Cataluminescence-based gas sensors, Springer Ser. Chem. Sens. Biosens. 3 (2005) 93-132.

Google Scholar

[5] K. W. Zhou, X. L. Ji, N. Zhang, X. R. Zhang, On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor, Sens, Actuators B 119 (2009) 392-397.

DOI: 10.1016/j.snb.2005.12.038

Google Scholar

[6] F. Wen, S. C. Zhang, N. Na, Y. Y. Wu, X. R. Zhang, Development of a sensitive gas sensor by trapping the analytes on nanomaterials and in situ cataluminescence detection, Sens. Actuators B 141 (2009) 168-173.

DOI: 10.1016/j.snb.2009.06.014

Google Scholar

[7] R.K. Zhang, X. A. Cao, Y. H. Liu, Y. Peng, A highly sensitive and selective dimethyl ether sensor based on cataluminescence, Talanta 82 (2010) 728-732.

DOI: 10.1016/j.talanta.2010.05.039

Google Scholar

[8] T. Okabayashia, M. Ozakib, M. Nakagawa, A new detection method of sevoflurane utilizing cataluminescence of γ- Al2O3 activated with Tb3+, Procedia Engineering 5 (2010) 1232-1235.

Google Scholar

[9] R. K. Zhang, X. A. Cao, Y. H. Liu, X. Y. Chang, A new method for identifying compounds by luminescent response profiles on a cataluminescence based sensor, Anal. Chem. 83 (2011) 8975-8983.

DOI: 10.1021/ac201776b

Google Scholar

[10] Y. Z. Jia, H. L. Zhang, L. Wu, Y. Lv, X. D. Hou, A new cataluminescence sensor for carbon tetrachloride using its catalytic reduction by hydrogen on palladium/carbon surface, Microchemical J. 95 (2010) 359-365.

DOI: 10.1016/j.microc.2010.02.013

Google Scholar

[11] United States Environmental Protection Agency, The original list of hazardous air pollutants, http: /www. epa. gov/ttn/atw/188polls. html.

Google Scholar

[12] International Agency for Research on Cancer, Agents Classified by the IARC Monographs, Volumes1–105, http: /monographs. iarc. fr/ENG/Classification/ClassificationsAlphaOrder. pdf.

Google Scholar

[13] J. S. Lu, X. A. Cao, C. Y. Pan, L. F. Yang, G.B. Lai, J.L. Chen, C. Q. Wu, Studies of the cataluminescence of benzene homologues on nanosized γ–Al2O3/Eu2O3 and the development of a gas sensor for benzene homologue vapors, Sensors 6 (2006).

DOI: 10.3390/s6121827

Google Scholar

[14] K. W. Zhou, Y. X. Zhao, Z. Xu, Y. Tong, Determination of BTX in air utilizing cataluminescence on nanometer composite materials, Chinese J. Anal. Lab. 25 (2006) 13-16.

Google Scholar

[15] R. A. Mohammad; N. Na; F. Wen, S.C. Zhang, X. R. Zhang, Development of a plasma-assisted cataluminescence system for benzene, toluene, ethylbenzene, and xylenes Analysis, Anal. Chem. 82 (2010) 3457-3459.

DOI: 10.1021/ac1006975

Google Scholar

[16] M. Liu, Research of γ-Al2O3/Pt catalyst for benzene hydrogenation in gas phase, J. Chem. Ind. Eng. 29 (2008) 7-10.

Google Scholar

[17] Z.M. Liu, X. H. Li, Z. J. Chen, P. L. Ying, Z. C. Feng, C. Li, Effect of reduction method on the surface states of γ-Al2O3/Pt, J. Fuel Chem. Tech. 37 (2009) 205-211.

DOI: 10.1016/s1872-5813(09)60017-7

Google Scholar

[18] Z. Q. Liu, J. Ma, Preparation and catalytic ozonation activity of Pt/CNTs catalyst, ACTA CHIM. SINICA 65 (2007) 2965-2970.

Google Scholar