Environmentally Synthesis of Metallic Oxide Short-Nanorod with Biological Compatibility by Organic Solvent Assisted Annealing Process

Article Preview

Abstract:

Metallic oxide ZnO short-nanorod of 33-83 nm in diameters and length up to 0.3um.with biological compatibility are environmentally fabricated by organic solvent-assisted annealing pro- cess. The sample was characterized by X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM). It demonstrates that the obtained ZnO short-nanorods have good crystal quality. A growth mechanism is proposed. This paper establish base for application of Metallic oxide short-nanorod to the area of bioscience in our future work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

421-425

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Xia, P. Yang, Y. Sun, Y, Wu, B. Mayers, B, Gates, Y. Yin, F. Kim, H. Y an, Adv. Mater. 15(2003)353.

Google Scholar

[2] K. Nomura, H. ohta, K. Ueda,T. kamiya, M. hirano,H. Hosono, Science. 300(2003)1269.

Google Scholar

[3] T. Nakada,Y. Hirabayashi, T. Tokado, O. Ohmori, T. Mise, Sol. Energy. 77(2004). 739.

Google Scholar

[4] S.Y. Lee, E.S. Shim, H.S. Kang, S.S. Pang, J.S. Kang, Thin Solid Films 437(2005)31.

Google Scholar

[5] R. Konenkamp R.C. Word,C. Schlegel, Appl. Phys. Lett. 85(2004)6004.

Google Scholar

[6] S.T. Mckinstry, P. Muralt, J. Electroceram. 12(2004)7.

Google Scholar

[7] Z.L. Wang X.Y. Kong,Y. Ding,P. Gao W.L. hughes,R. Yang,Y. Zhang, Adv. Funct. Mater. 14(2004)943.

Google Scholar

[8] M.S. Wagh, L.A. Patil,T. Seth D.P. Amalnerkar, Mater Chem. Phys. 84(2004)228.

Google Scholar

[9] Y. Ushio,M. Miyayama,H. Yanagida, Sensor Actuat.B. 17(1994)221.

Google Scholar

[10] H. Harima,J. Phys: Condens Matter 16(2004)S5635.

Google Scholar

[11] S.J. Pearton, W.H. Heo,M. Ivill D.P. Norton,T. Steiner, Semicond. Sci. Technol. 19(2004)R59.

DOI: 10.1088/0268-1242/19/10/r01

Google Scholar

[12] ZM Liu, YL Liu, HF Yang, Y Yang, GL Shen, RQ Yu. Electroanalysis 17(2005). 1065-70.

Google Scholar

[13] L. Chen,B. Gu, G, Zhu,Y. Wu, S. Liu, C, Xu, J. Electroan chem. 617(2008)7-13.

Google Scholar

[14] E. Topoglidis A.E.G. Cass,B. Oˊ. Regan, J.R. Durrant, J. Electroanal. Chem. 517(2001)20-27.

Google Scholar

[15] S. Liang, H. Sheng,Y. Liu, Z. Hio,Y. Lu,H. Shen,J. cryst. Growth. 225(2001)110.

Google Scholar

[16] M. Huang, Y. Wu.H. Feick,N. Tran, E. Weber P.D. Yang, Adv. Mater. 13(2001), 113.

Google Scholar

[17] J.H. Choi, H. Tabata T.J. Kawai. Cryst. Growth. 226(2001)493.

Google Scholar

[18] M.G. Ambia M.N. Islam M.O. Hakim,J. Mater. Sci. 29(1994)6575.

Google Scholar

[19] N. Saito,H. Haneda,T. Sekiguchi,N. Ohashi,I. Sakaguchi,K. Koumoto, Adv. Mater. 14(2002)418.

Google Scholar

[20] J.Y. Lee Y.S. Choi J.H. Kim M.O. Park,S. Im, Thin Solid Films. 403(2002)553.

Google Scholar

[21] B.M. Matter, M.P. Chavant J.M. Beny J.A. Alary,J. Am. Ceram. soc. 79(1992)2515.

Google Scholar

[22] K.H. Yoon Y.H. Cho D.H. Kang,J. Mater. Soci. 33(1998)2997.

Google Scholar

[23] R.H. Arendt, Rosolowski, J.W. Szymaszek, Matter. Res. Bull 14(1979)591.

Google Scholar