Enhanced Adsorption for P-Chlorophenol by Ammonia Modified Activated Carbon

Article Preview

Abstract:

To investigate the influence of N-containing surface functional groups on adsorption capacity of AC, the activated carbon (AC) was modified with ammonia gas at 650 °C. Surface functional groups were quantitatively analyzing by Boehm titration. The effect of temperature on adsorption capacity suggested higher temperature is favourable. The influence of pH indicated the adsorption was favorable in acidic solution. The adsorption isotherms were fitted by Langmuir model and Freundlich model. Moreover, kinetic studies showed the adsorption of phenol onto adsorbents was followed by pseudo-second-order kinetic model. The adsorption capacity of ammoniated AC for p-chlorophenol was greatly improved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

807-812

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. K. Singh, et al.: J Hazard Mater, Vol. 155 (2008), pp.523-535.

Google Scholar

[2] K. Rzeszutek and A. Chow: Talanta, Vol. 46 (1998), pp.507-519.

Google Scholar

[3] A. Annachhatre and S. Gheewala: Biotechnol Adv, Vol. 14 (1996), pp.35-56.

Google Scholar

[4] J. D. Rodgers, et al.,: Environ Sci Technol, Vol. 33 (1999), pp.1453-1457.

Google Scholar

[5] Z. Lazarova and S. Boyadzhieva: Chem Eng J, Vol. 100 (2004), pp.129-138.

Google Scholar

[6] T. A. Özbelge, et al.: Chem. Eng. Process. Vol. 41, pp.719-730, (2002).

Google Scholar

[7] A. Dąbrowski, et al.: Chemosphere, Vol. 58 (2005), p.1049.

Google Scholar

[8] S. Liu and R. Wang: J Porous Mat, Vol. 18 (2011), p.99.

Google Scholar

[9] C. Y. Yin, et al.: Sep Purif Technol, Vol. 52 (2007), p.403.

Google Scholar

[10] F. Villacañas, et al.: J Colloid Interf Sci, Vol. 293 (2006), p.128.

Google Scholar

[11] B. Li, et al.: Catal Today, Vol. 158 (2010), p.515.

Google Scholar

[12] L. Velasco and C. Ania: Adsorption, Vol. 17 (2011), p.247.

Google Scholar

[13] X. Chen, et al.: Botanical Studies, Vol. 52 (2011), p.41.

Google Scholar

[14] J. Przepiorski, et al.: Appl Surf Sci, Vol. 225 (2004), p.235.

Google Scholar

[15] C. L. Mangun, et al.: Carbon, Vol. 39 (2001), p.1809.

Google Scholar

[16] V. V. Strelko, et al.: Carbon, Vol. 38 (2000), p.1499.

Google Scholar

[17] I. I. Salame and T. J. Bandosz: J Colloid Interf Sci, Vol. 240 (2001), p.252.

Google Scholar

[18] B. Babi, et al.: Carbon, Vol. 37 (1999), p.477.

Google Scholar

[19] Y. Özdemir, et al.: Micropor Mesopor Mat, Vol. 96 (2006), p.419.

Google Scholar

[20] Y. M. Tzou, et al.: J Hazard Mater, Vol. 152 (2008), p.812.

Google Scholar

[21] O. Hamdaoui and E. Naffrechoux: J Hazard Mater, Vol. 147 (2007), pp.401-411.

Google Scholar

[22] I. Langmuir: J Am Chem Soc, Vol. 40 91918), p.1361.

Google Scholar

[23] G. D. Parfitt and C. H. Rochester, Adsorption from solution at the solid/liquid interface: Academic press, Norwich, NY (1983).

Google Scholar

[24] Y. Ho and G. McKay: Chem Eng J, Vol. 70 (1998), p.115.

Google Scholar

[25] Y. Ho and G. McKay: Process Biochem, Vol. 34 (1999), p.451.

Google Scholar