[1]
Xu-dong Li, Yun Yang. Wastewater treatment technology and engineering application[M]. Beijing: China Machine Press, (2003).
Google Scholar
[2]
De-hui Yu, Yi Luo, Ying-ming Zhao, et al. Guide to printing and dyeing wastewater pollution control technology[M]. Beijing: China Environmental Science Press, (2002).
Google Scholar
[3]
Ciardelli, Gianluca, Ranieri, et al. The treatment and reuse of wastewater in the textile Industry by means of ozonation and elec-troflocculation[J]. Water Research, 2001, 35(2): 567-572.
DOI: 10.1016/s0043-1354(00)00286-4
Google Scholar
[4]
Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WO3-TiO2 under visible light irradiation[J]. Photochem Photobiol A: Chem, 2001, 141(3): 209-217.
Google Scholar
[5]
Ling Shi, She-ying Dong, Shi-hou Bai, et al. Degradation of dye wastewater by catalytic wet oxidation at room temperature and atmospheric pressure[J]. Journal of Environmental Engineering, 2011, 5(6): 1325-1329.
Google Scholar
[6]
Jie Zhang, Shu-zhong Wang, Yang Guo, et al. Experimental study on supercritical water oxidation of azo dye wastewater [J]. Chemical Engineering, 2011, 39(10): 11-15.
Google Scholar
[7]
Hui Zheng, Xing-zu Wang De-zhi. Sun Anaerobic photo—rotating biological OntactOr/aer Obic biofilm for the treatment of azo dye wastewater[J]. Industrial Water Treatment, 2009, 20(1): 49-52.
Google Scholar
[8]
Ayumu Onda, Yotaro Suzuki, Shinji Takemasa, et al. Catalytic Wet Oxidations of Aromatic Compounds over Supported Copper Oxides[J]. Journal of Materials Science, 2008, 43(12): 4230-4235.
DOI: 10.1007/s10853-008-2612-3
Google Scholar
[9]
Gabriel Ovejero, José Luis Sotelo, Araceli Rodríguez, et al. Wet Air Oxidation and Catalytic Wet Air Oxidation for Dyes Degradation[J]. Environmental Science and Pollution Research, 2011, 18(9): 1518-1526.
DOI: 10.1007/s11356-011-0504-6
Google Scholar
[10]
S.T. Kolaczkowskia, P. Plucinskia, F.J. Beltranb. Wet air oxidation: a review of process technologies and aspects in reactor design[J]. Chemical Engineering Journal, 1999, 73(2): 143-160.
Google Scholar
[11]
Pradier C.M., Rodrigues F., Marcus P., et al. Supported chromia catalysts for oxidation of organic compounds: The state of chromia phase and catalytic performance[J]. Applied Catalysis B: Environmental Volume, 2000, 27(2): 73-85.
DOI: 10.1016/s0926-3373(00)00142-9
Google Scholar
[12]
Jianbing Wang, Wanpeng Zhu, Shaoxia Yang, et al. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts[J]. Applied Catalysis B: Environmental, 2008, 78(1): 30–37.
DOI: 10.1016/j.apcatb.2007.08.014
Google Scholar
[13]
Wei Fusheng. Water and wastewater monitoring and analysis methods[M]. Beijing: Higher education press, 2009, 351-370.
Google Scholar
[14]
Jian-hua Sun, Teng-rui Long, Yu-lian Lin, et. al. Preparation and characterization of Ni-Co-Ce-O catalysts in treatment butyric acid wastewater by MIOP[J]. Journal of environmental engineering, 2011, 5(1): 90-94.
Google Scholar
[15]
Yong-li Zhang, Xiao-min Hu, Hong Li. Study on Calcination Conditions on Wet Oxidation Cu Supported Catalyst[J]. Journal of Synthetic Crystals, 2010, 39(1): 272-276.
Google Scholar
[16]
Zhao Yueqing, Zhao Hailei, Jia Qianyi, et al. CuO (CoO, MnO)/SiO2 nanocomposite sol-gel preparation and characterization of airgel catalyst carrier[J]. Functional material, 2009, 40(2): 317-321.
Google Scholar
[17]
Da-hao Jiang, Yun-jie Ding, Lin Li, et al. Studies of Highly Efficient Rh-Mn-Li/SiO2 Catalyst by Microcalorimetry and FT-IR[J]. Molecular Catalysis, 2008, 20(1): 5-9.
Google Scholar
[18]
Irene Palacio, Juan M. Rojo, Oscar Rodrguez, et al. Surface Defects Activating New Reaction Paths: Formation of Formate during Methanol Oxidation on Ru[J]. Chem. & Phys. Chem., 2012, 13(2), 2354–2360.
DOI: 10.1002/cphc.201200190
Google Scholar